
CompSci 366

Introduction to Planning

What’s Happening

• 4 Lectures Covering:
– Classical Plan Representation
– Progression Planning
– Regression Planning

Outline

• Why plan?

• Current Status & Future of Planning

• Modeling a Domain

• Plans and Planning

Why Plan?

• We have a problem!
– We have a goal that isn’t currently achieved.

Why Plan?

• We have a problem!
– We have a goal that isn’t currently achieved.

• We don’t readily know how to solve it!
– Need to think about how to solve it.

Why Plan?

• We have a problem!
– We have a goal that isn’t currently achieved.

• We don’t readily know how to solve it!
– Need to think about how to solve it.

• What we want is a plan!
– Don’t simply want to know if it is achievable, want

a plan that will achieve it.

How Do We Plan?

• We usually do mental simulations of scenarios.
• Not just one scenario, first one rarely succeeds.
• But a search through a space of different

scenarios for one that achieves our goal.
• These scenarios describe our problem space

Problem Space Hypothesis

• Allen Newell proposed the Problem Space
Hypothesis: namely that all human problem-
solving can be described in terms of:
– Situations
– Operators that have preconditions and effects.
– Search control knowledge.

• Planners are certainly built this way.

Should We Always Plan?

• In general, planning is very computationally
expensive!!!!

Should We Always Plan?

• In general, planning is very computationally
expensive!!!!

• Even in very simplified models of our
domains!!

Should We Always Plan?

• In general, planning is very computationally
expensive!!!!

• Even in very simplified models of our
domains!!

• In everyday life, caching is usually better than
planning.

When Should An Agent Plan?

• When it has a problem.

When Should An Agent Plan?

• When it has a problem.
• That it doesn’t already have a cached solution

for.

When Should An Agent Plan?

• When it has a problem.
• That it doesn’t already have a cached solution

for.
• But where it has a domain model which will

allow it to explore possible solution scenarios.

Our First Glimpse of
Classical Planning

• Will describe an approach to :
– Domain modelling (this lecture)

– Search space structure (next lecture)

– Search space traversal (next lecture)

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Classical Assumptions

• Finite propositional domains.

• Omniscience.

• Actions are completely deterministic.

• No exogenous events.

Classical Assumptions

• All actions take unit time to occur.

• Only qualitative resources.

• All actions occur sequentially.

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Problem Representation

• Problem is described by:
– A complete description of the initial situation.

– A description of the desired goals.

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Situation Representation

• Omniscience => must be able to determine the
truth/falsity of all propositions for a given
situation.

• Generally, situations cannot be represented by
vectors.

• Situations are represented by propositional
expressions.

Situation Representation cont’d

• Given a situation, how do we represent it?

c
a b

Situation Representation cont’d

• Need to do some domain ontology
engineering
– What aspects are important?
– What do we want to capture?

• In general, very difficult to get right.

Sample Problem

• What’s important and needs to be represented?
• Assume we only need the following predicates:

– on(Block1, Thing1)
– clear(Block)

c
a b

=> b
c

a

Situation Representation cont’d

• Given our ontology, how would we describe
this situation?

• Need to know everything about situation.

c
a b

Situation Representation cont’d

• What about : on(c,a), on(a,table), clear(c),
on(b, table), clear(b), ~on(c,b), ~on(c,table),
on(c,a) ^ on(a,table), on(c,a) v on(a,b), …

c
a b

Situation Representation cont’d

• Negated literals: an infinite number of things
that aren’t true in a given situations.

• Logical expressions: an infinite number of true
expressions can be built up from logical
combinations of literals.

c
a b

Situation Representation cont’d

• Negated literals: use closed world assumption
(CWA) [similar to negation by failure in
Prolog].

• Logical expressions: use deduction to evaluate.

c
a b

Situation Representation cont’d

• Situation = {on(c,a), on(a,table), clear(c),
on(b, table), clear(b)}

• Want to be able to infer ~on(c,b), etc., and
on(c,a) ^ on(a,table), etc., from this
representation.

c
a b

Situation Representation cont’d

• Some things about the world we can change or some we
can’t, represented by values of predicates changing .

• The predicates whose values can change from state to
state are called fluents.

• The domain operators tell us which predicates are
fluents, since we assume no other agents and no
exogeneous events.

• For example, the location of the warehouse keeper in
sokoban is a fluent as are the location of the tiles in the
8-puzzle.

Situation Representation cont’d

• There are also some predicates whose values will not
change for a problem, i.e., are static, though they may
differ from problem to problem.

• For example, in sokoban the location of the walls is
static during a problem and in 8-puzzle which
positions are adjacent to which other positions is static.

• Static predicates never appear in the effects of an op.
• Also, static predicates can be associated with the

problem rather than being associated with each state.

Situation Representation cont’d

• Storing the static information separately from the
fluents can enable a large savings in space and time.

• However, this means that there must be a record of
which predicates are fluent and which are static, so the
program knows whether to look at the state or the
problem to determine its value.

Situation Representation cont’d

• Some the values of some predicates can be derived
from the values other predicates.

• For example, in blocks world the value of the
clear(Block) predicate can be derived from the value of
the on(X, Block) predicate, i.e., if there is nothing on
top of Block then it is clear.

• Such predicates are called derived predicates as
opposed to the primitive predicates whose values can
not be derived from other the values of other
predicates.

Situation Representation cont’d

• If the planner can actually use a definition of the derived
predicate to calculate its value, then we can save space by not
storing derived predicates (or we can save time by caching there
values).

• If the planner calculates the values of derived predicates then we
need to differentiate between derived and primitive predicates
because the values of primitive fluents will be stored with each
state while the values of derived predicates will be defined as
part of the domain information.

• For example, we could define:
clear(Block) :- once(not(on(_, Block))).

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Goal Representation

• In situations, the fact that on(b,c) is not true is
presented by not having them in the list of true
literals.

• How would we represent the goal of wanting
on(b,c) to be false?

Goal Representation

• For states, there are only 2 options a literal is
either true or it is false.

• For goals, there are 3 options, a literal is desired
to be true, desired to be false, or we don’t care.

• With goals we need to distinguish between what
we want to be false and what we don’t care
about.

Goal Representation

• How would we represent the goal of wanting
on(b,c) to be false versus not caring about it?

• For us, we represent it as not(on(b,c)).

• Literals we don’t care about are not mentioned
in the goal description.

Problem Representation Revisited

• Initial situation = {on(c,a), on(a,table),
clear(c), on(b, table), clear(b)}

• Goal situation = {on(a,b), on(b,c)}, note
haven’t said what, if anything, is on top of a nor
what c is on top of, it’s a “don’t care”.

c
a b

=> b
c

a

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Action Representation

• Propositionally based.
• Use action schema rather than concrete actions

(i.e., parameterised actions).
• Need to describe:

– When action is legal.
– What are the effects of executing the action.
– Perhaps, when the action makes sense.

Action Representation cont’d

• Action schema represents actions that will take
place in our simulations and reflect what
happens in our domain.

• Action representation includes:
– Action schema name.
– Action schema parameters.
– Action preconditions.
– Action effects.

Action Representation cont’d

• Example action schema:
– Move block from location to location.
– op(move, [Block, FromLoc, ToLoc],

[on(Block,FromLoc), clear(Block), clear(ToLoc)],
[not(on(Block,FromLoc)), clear(FromLoc),
not(clear(ToLoc)), on(Block, ToLoc)])

• What’s wrong with this schema?

Action Representation cont’d

• What happens when ToLoc is the table?

Action Representation cont’d

• What happens when ToLoc is the table?
– Can only move blocks to the table at certain times.
– Moving a block to the table makes the table no

longer clear (whatever that means, what does
“clear” mean anyway?).

– Then can’t move anything to it until it’s made clear
again.

• How could we fix this?

Action Representation cont’d

• One way: extend domain language by
introducing new action for moving blocks to
table: newStack(Block, FromLoc)

• Also, check that move’s ToLoc is a block: add
block type check to preconditions and add block
type info to situation descriptions.

Action Representation cont’d

• move action schema revisited:
– op(move, [Block, FromLoc, ToBlock],

[on(Block,FromLoc), clear(Block), block(ToBlock),
clear(ToBlock)],
[not(on(Block,FromLoc)), clear(FromLoc),
not(clear(ToBlock)), on(Block, ToBlock)])

• What else is wrong with this schema?

Action Representation cont’d

• What happens if Block = ToBlock?
– move’s preconditions are satisfied.
– But end up with a block being on top of itself.

• How do we fix this?

Action Representation cont’d

• One way would be to add the constraint that
Block and ToBlock can’t be the same block to
move’s preconditions: [on(Block,FromLoc), ...,
clear(ToBlock)] => [on(Block,FromLoc), …,
clear(ToBlock), neq(Block,ToBlock)]

Action Representation cont’d

• Note that neq(Block,ToBlock) is a different
kind of test from clear(ToBlock).

• The latter tests a situation, while the former
tests a planner choice.

• The latter is called an object-level test and the
former is called a meta-level test.

Action Representation cont’d

• Is our description of the move action good
enough now? How can we tell?

Action Representation cont’d

• Is our description of the move action good
enough now? How can we tell?

• It’s good enough if the plans our planner
creates using these descriptions usually (almost
always, …) succeed when we execute them in
the “real world”.

• How might it fail?

Action Representation cont’d

• It could fail if our preconditions don’t capture
all the relevant tests.

• In general there are an infinite number of
preconditions for the represented action to
adequately model the real world action.

• This representation problem is known as the
qualification problem.

Action Representation cont’d

• It could also fail if our effects don’t capture all
the relevant results.

• In general there are an infinite number of effects
for the represented action to adequately model
the real world action.

• This representation problem is known as the
ramification problem.

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Simulation Process

• How do we use the action descriptions to
simulate the effect of executing that action in a
given situation?
– The parameters must be instantiated.
– Simulation checks the action’s instantiated

preconditions are satisfied by the situation.
– Positive effect literals are added to the situation and

negative effect literals are removed from it.

Domain Modelling

• Classical assumptions
• Problem representation
• Situation representation
• Goal Representation
• Action representation
• The simulation process
• Plan representation

Plans & Planning
• Given a problem description with an initial

situation description and a goal description, find
a plan that transforms initial situation into one
that satisfies the goal description.

• How are we going to represent a plan?
– As a sequence (i.e., list) of steps.
– A step is an instantiated action schema that is part of

a plan. Note: there may be many steps that have the
same instantiated action schema.

Plans & Planning cont’d

• Note: given a plan and an initial situation, we
can simulate the effect of executing each step of
the plan upon the resulting situations.

Plans & Planning cont’d

• How do we find an adequate plan?
• One way is the following:

– Transform the problem description into an initially
“empty” plan.

– Add actions into the “partial” plan until it represents
a solution to the problem.

Summary

• Planning is how an intelligent agent figures out
how to achieve its goals.

• Planning is becoming quite important as we
attempt to build evermore competent agents.

• Newell’s Problem Space Hypothesis: problem-
solving can be described as states, operators,
and search control knowledge.

Summary cont’d

• A problem is an initial situation and a goal description.
• If we use CWA then a situation is a set of positive

grounded object-level predicates.
• Predicates can be fluent/static, derived/primitive,

object-level/meta-level.
• A goal description is a set of possibly both positive and

negative, object- and meta-level, primitive and derived
and static terms and fluents.

• An operator’s effects can only be a set of possibly both
positive and negative, object-level, primitive static
terms.

Summary cont’d

• A plan is a sequence of steps.

• A step is a domain action.

• A domain action has a name, set of parameters,
precondition, and effects.

Summary cont’d

• Creating the predicates and the action
descriptions is part of domain engineering.

• Describing domain actions has two problems:
– Qualification Problem
– Ramification Problem

Summary cont’d

• We can create pseudo-steps that represent the
initial situation and the goal description.

• With these pseudo-steps, we can create empty
plans.

• Planning becomes a plan refinement process.
• We will look at one such process next time.

