
Neural Networks

Computer Science 367
Patricia J Riddle



Some History of Neural Networks

• McCulloch and Pitts [1943]: Model of artificial
neurons

• Hebb [1949]: Simple updating rule

• Minsky and Edmonds [1951]: First neural network
computer

• Rosenblatt [1962]: Perceptrons (the model)

• Minsky and Papert [1969]: Perceptrons (the book)



Revival of Neural Networks
Recently, there has been a resurgence of interest in
neural networks for the following reasons:

• Faster digital computers to simulate larger networks

• Interest in building massively parallel computers

• New neural network architectures

• Powerful Learning algorithms



Characteristics of Neural Networks

• A large number of very simple neuronlike processing
elements

• A large number of weighted connections between the
elements

• Highly parallel, distributed control

• An emphasis on learning internal representations
automatically



The 100-Time-Steps Requirement

• Individual neurons are extremely slow devices
(compared to digital computers), operating in the
millisecond range.

• Yet, humans can perform extremely complex tasks in
just a tenth of a second.

• This means, humans do in about a hundred steps
what current computers cannot do in 10 million steps.

• Look for massively parallel algorithms that require no
more than 100 time steps.



 Failure Tolerance
• On the one hand, neurons are constantly

dying, and their firing patterns are irregular

• On the other hand, components in digital
computers must operate perfectly.

• With current technology, it is:
– Easier to build a billion-component IC in which

95% of the components work correctly.
– More difficult to build a million-component IC that

functions perfectly.



Fuzziness

• People seem to be able to do better than
computers in fuzzy situations.

• We have very large memories of visual,
auditory, and problem-solving episodes.

• Key operation in solving new problems is
finding closest matches to old situations.



Hopfield Networks
Theory of memory
• Hopfield introduced this type of neural network as a

theory of memory.

Distributed representation
• A memory is stored as a pattern of activation across

a set of processing elements.
• Furthermore, memories can be superimposed on one

another; different memories are represented by
different patterns over the same set of processing
elements.



Hopfiled Networks (cont’d)
Distributed, asynchronous control
• Each processing element makes decisions based only on its

own local situation.  All the local actions add up to a global
solution.

Content-addressable memory
• A number of patterns can be stored in a network.  To retrieve a

pattern, we need only specify a portion of it.  The network
automatically finds the closest match.

Fault tolerance
• If a few processing elements misbehave or fail completely, the

network will still function properly.



Technical Details of Hopfield Networks

• Processing elements (units) are either in state
active (1) or passive (-1).

• Units are connected to each other with
weighted, symmetric connections (recurrent
network).

• A positively (negatively) weighted connection
indicates that the two units tend to activate
(deactivate) each other.



Parallel Relaxation in Hopfield Networks

• A random unit is chosen.

• If any of its neighbors are active, the unit computes
the sum of the weights on the connections to those
active neighbors.

• If the sum is positive, the unit becomes active;
otherwise it becomes inactive.

• The process (parallel relaxation) is repeated until the
network reaches a stable state.



Example of a Hopfield Network



Some Features of Hopfield Networks

• Given any set of weights and any initial state, parallel relaxation
eventually steers the network into a stable state.

• The network can be used as a content-addressable memory by
setting the activities of the units to correspond to a partial
pattern. To retrieve the pattern, we need only supply a portion of
it.

• Parallel relaxation is nothing more than search, albeit of a
different style. The stable states correspond to local minima in
the search space.

• The network corrects errors: if the initial state contains
inconsistencies, the network will settle into the solution that
violates the fewest constraints offered by the inputs.



Perceptrons
• This type of network was invented by Rosenblatt [1962].

• A perceptron models a neuron by taking a weighted sum of its
inputs and sending the output 1 if the sum is greater than or
equal to some adjustable threshold value; otherwise it sends 0.

• The connections in a perceptron, unlike in a Hopfield network,
are unidirectional (feedforward network).

• Learning in perceptrons means adjusting the weights and the
threshold.

• A perceptron computes a binary function of its input.
Perceptrons can be combined to compute more complex
functions.



Activation Function

• Input:

• Output with explicit threshold:

• Output with implicit threshold:
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What Perceptrons Can Represent

• Linearly Separable Function

• Input:

• Output:

• Decision Surface:
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Limitations of Perceptrons

• If a decision surface does not exist, the
perceptron cannot learn the function.

• An example is the XOR function:



Perceptron Learning Method

• Start with randomly assigned weights.

• For each example    do:
– Let o be the computed output
– Let t be the expected (target) output.
– Update the weights based on   , o, and t.

• Repeat the process (i.e., go through another
epoch) until all examples are correctly
predicted or the stopping criterion is reached.
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Updating Rule
• The error is the difference between the expected output

and the computed output:
err = t － o

• If the error is positive (negative), o must be increased
(decreased).

• Each input xi contributes wixi to the total input.
• If xi is positive (negative), increasing wi will increase

(decrease) o.
• The desired effect can be achieved with the following

rule (α is the learning rate):
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Multilayer Feed-Forward Networks

•  Input units are connected to hidden units.

• Hidden units are connected to other hidden
units.

• . . .

• Hidden units are connected to output units.



Example of a Two-Layer Feed-Forward Network



The Idea of Back-Propagation Learning

• Compute the output for a given input and compare it
with the expected output.

• Assess the blame for an error and divide it among the
contributing weights.

• Start with the second layer (hidden units to output
units) and then continue with the first layer (input
units to hidden units).

• Repeat this for all examples and for as many epochs
as it takes for the network to converge.



Backpropagation Update Rules
(2nd Layer)

•  Let Erri be the error (Ti － Oi) at the output node.

• Let ini be the weighted sum ∑j Wj,i aj of inputs to unit i.

• Let ∆i be the new error term Erri g′(ini).

• Then the weights in the second layer are updated as
follows:

Wj,i ← Wj,i + α • aj  • ∆i



Backpropagation Update Rules
(1st Layer)

• Let ∆j be the new error term for the first layer:

• Then the weights in the first layer are updated
as follows:
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Activation Function

• Backpropagation requires the derivative of the
activation function g.

• The sign function (used in Hopfield networks) and the
step function (used in Perceptrons) are not
differentiable.

• Usually, backpropagation networks use the sigmoid
function:



Pros and Cons of Backpropagation

• Pros
– Fortunately, this does not happen very often, i.e., the lack of

a convergence theorem is not a problem in practice.
– Backpropagation is inherently a parallel, distributed

algorithm.
• Cons

– Backpropagation might get stuck in a local minimum that
does not solve the problem, i.e., there is no analogue of the
perceptron convergence theorem.

– Even for simple problems like the XOR problem, the speed
of learning is slow.


