
Decision Tree Learning

Patricia J Riddle
Computer Science 367

Decision Tree Learning
• Discrete valued target functions - Classification problems

• Represented as sets of if-then rules to improve human
readability

• Used in many success stories

• Classify instances by sorting them down the tree
– Each internal node is a test on some attribute
– Each branch is one possible value for that test
– Each leaf specifies classification value

Decision tree

Learned Rules
• Outlook=Sunny∧Humidity=High→PlayTennis=No

• Outlook=Sunny∧Humidity=Normal→PlayTennis=Yes

• Outlook=Overcast→PlayTennis=Yes

• Outlook=Rain∧Wind=Strong→PlayTennis=No

• Outlook=Rain∧Wind=Weak→PlayTennis=Yes

When to use Decision Tree Learning

• Instances are represented by attribute value pairs (can be
real valued).

• The target value has discrete output values (no need to be
binary, some extensions even handle real valued targets).

• Disjunctive descriptions may be required

• The training data
– may contain errors - errors in classification and errors in attribute

values
– may contain missing attribute values

ID3 Algorithm

What Attribute is the Best
Classifier?

• Entropy (from information theory)
– Measures the impurity of an arbitrary collection

of examples
• Entropy(S)≡-p⊕log2p⊕-plog2p

– for a boolean classification where p⊕ is the
proportion of positive examples in S and p is
the proportion of negative examples in S.

– In all calculations involving entropy we define
0log0 to be 0

Entropy

• Entropy(9+,5-)=-(9/14)log2(9/14)-(5/14)log2(5/14)=.94
– If all members of S are in the same class Entropy(S)=0
– If there is an equal number of positive and negative

instances in S then Entropy(S)=1

• Entropy specifies the minimum number of bits of
information needed to encode the classification of
an arbitrary member of s

General Entropy Formula

• Generally,

– For example if there are 4 classes and the set is
split evenly, 2 bits will be needed to encode the
classification of an arbitrary member of S.

– If it is split less evenly an average message
length of less then 2 can be used.

!

Entropy(S) " #pi log2 pi
i=1

c

$

Entropy Function

Information Gain

– Where Values(A) is the set of possible values for the
attribute A and Sv is the subset of S for which attribute
A has value v.

• Information Gain is the expected reduction in
entropy caused by knowing the value of attribute
A.

!

Gain(S,A) " Entropy(S) #
| Sv |

| S |v$Values(A)
% Entropy(Sv)

Information Gain Intuition

• Information Gain is the information
provided about the target function value,
given the value of some other attribute A.

• The value of Gain(S,A) is the number of
bits saved when encoding the target value of
an arbitrary member S, by knowing the
value of A.

Information Gain Example

• Of our 14 examples suppose 6 positive and
2 negative have Wind=Weak.

• Values(Wind)=Weak,Strong

S=[9+,5-]
Sweak←[6+,2-]
Sstrong←[3+,3-]

Information Gain Example II

The information gain by sorting the 14 examples by
Wind is:

=0.940-(8/14)0.811-(6/14)1.00
=0.048

!

Gain(S,Wind) = Entropy(S) "
| Sv |

| S |v#{weak,strong}
$ Entropy(Sv)

!

Entropy(S) " (8 /14)Entropy(SWeak) " (6 /14)Entropy(SStrong)

Decision Tree Example

• ID3 uses Information Gain to select the best
attribute at each step in growing the tree.

• Gain(S,Outlook)=0.246
• Gain(S,Humidity)=0.151
• Gain(S,Wind)=0.048
• Gain(S,Temperature)=0.029

Example Continued

Partially Grown Tree

Final Tree

Searching in Decision Trees

• ID3 can be seen as searching the space of
possible decision trees:
– Simple to complex hill-climbing search
– Complete hypothesis space of finite discrete-

valued functions
– ID3 maintains only a single current hypothesis

Searching II
• Can’t tell how many alternative decision trees are

consistent with the available training data

• Can’t pose queries for new instances that optimally resolve
the competing hypothesis

• Pure ID3 performs no backtracking - can converge to local
optimum

• ID3 not incremental - less sensitive to errors in individual
training instances - easily extended to handle noisy data

ID3 Hypothesis Space

Inductive Bias in Decision Tree Learning

• Much harder to define because of heuristic
search
– Shorter trees are preferred over long ones.
– Trees that place high information gain

attributes close to the root are preferred over
those that do not.

Restriction Biases and Preference Biases

• ID3 incompletely searches a complete hypothesis space
from simple to complex hypothesis. Its bias is solely a
consequence of the ordering of hypothesis searched. Its
hypothesis space introduces no additional bias - preference
or search bias.

• Candidate-Elimination completely searches an incomplete
hypothesis space. Its bias is solely a consequence of the
expressive power of its hypothesis representation. Its
search strategy introduces no additional bias - restriction
or language bias.

What is the Best Bias?

• A preference bias is more desirable

• First learner
– restriction bias (linear function),
– preference bias (LMS algorithm for parameter

tuning)

Occam’s razor

• Prefer the simplest hypothesis that fits the data.
• Why?

• Fewer short hypothesis then long ones - it is less
likely that one will find a short hypothesis that
coincidently fits the training data

• This is really rubbish!!!!

Occam’s razor is Cut
• “prefer decision trees containing exactly 17 leaf nodes with

11 nonleaf nodes, that use the decision attribute A1 at the
root and test attributes A2 through A11, in numerical
order.

• There are relatively few such trees and we might argue (by
the same reasoning above) that our a priori chance of
finding one consistent with an arbitrary set of data is
therefore small.”

• Another problem - based on internal learner’s
representation

Avoiding Overfitting

• Noise in data,
• number of training instances too small

• Given a hypothesis space H, a hypothesis h∈H is
said to overfit the training data if there exists some
alternative hypothesis h´∈H, such that h has a
smaller error than h´ over the training examples,
but h´ has a smaller error than h over the entire
distribution of instances.

• Pretty useless definition - not causal

Overfitting in Decision Trees

Approaches to Overfitting

• Stop growing tree earlier
• Post-prune the tree
• Separate set of examples -

– training and validation set approach - even if the
training set is mislead by random errors the validation
set is unlikely to exhibit the same random fluctuations -
2/3 training, 1/3 validation

• Statistical test
• Measure for complexity of encoding

Reduced Error Pruning

• Consider each node for pruning

• Pruning = removing the subtree at that node, make
it a leaf and assign the most common class at that
node

• A node is removed if the resulting tree performs
no worse then the original on the validation set -
removes coincidences and errors

Reduced Error Pruning II

• Nodes are removed iteratively choosing the node
whose removal most increases the decision tree
accuracy on the graph.

• Pruning continues until further pruning is harmful.

• Uses training, validation & test sets
– effective approach if a large amount of data is available

Impact of Reduced Error Pruning

Rule Post Pruning

1. Infer decision tree from training set

2. Convert tree to rules - one rule per branch

3. Prune each rule by removing preconditions that
result in improved estimated accuracy

4. Sort the pruned rules by their estimated accuracy
and consider them in this sequence when
classifying unseen instances

Improved Estimated Accuracy

1. Calculate the rule accuracy over training data

2. Calculate the standard deviation assuming a
binomial distribution

3. For a given confidence interval, lower bound
estimate is taken as measure of rule performance

Improved Estimated Accuracy II

• For large data sets the estimated accuracy is
very close to the observed whereas it grows
further away as the data set size decreases

• Not statistically valid, but found useful in
practice

Why Convert to Rules?

• Allows distinguishing among different
contexts in which a node might be used

• Removes distinction between attribute tests
near the root versus leafs
– no messy bookkeeping

• Easier for people to understand

Continuous Valued Attributes?

• Dynamically creating new discrete valued
attributes Ac that is true if A < c

1. Sort examples according to the continuous attribute
value

2. Identify adjacent examples that differ in their target
classifications

3. Generate candidate threshold midway between these
points

4. Calculate the information gain of each candidate and
pick best

5. Dynamically created boolean attributes to compete
with others to appear in tree

Continuous Valued Attributes II

• The value of c that maximizes information
gain must be one of these points

• Many other approaches

Example

• (48+60)/2 = 54
• (80+90)/2 = 85
• Temperature>54, Temperature>85

NoYesYesYesNoNoPlayTennis
908072604840Temperature

Other Measures for Picking
Attributes

• Information Gain has natural bias towards
attributes with many values over ones with
few
– For instance Date attribute has highest

information gain

• Use Gain Ratio

Gain Ratio

• Entropy of S with respect to the values of A

!

SplitInfo(S,A) " #
| Si |

| S |
i=1

c

$ log2
| Si |

| S |
!

GainRatio(S,A) "
Gain(S,A)

SplitInfo(S,A)

Gain Ratio Intuition

• If attribute A splits the examples each into
separate unique values (Date), SplitInfo = log2n

• If attribute B splits the examples in half,
SpiltInfo=1

• Then if attributes A and B have the same Gain
then B will clearly score higher

Problems with Gain Ratio

• If |Si| ≈|S|, then GainRatio is undefined or
very large

• To avoid selecting attributes on this basis
1. Calculate Gain of each attribute
2. Calculate GainRatio only on attributes with

above average Gain
3. Choose best GainRatio

Problems with Gain Ratio II

• Many other evaluation functions
• Distance metric Lopez de Mantaras, 1991

– Distance between our partition and the perfect
partition

– Not biased by number of values for an attribute

Missing Attribute Values in
Training Examples

• Blood-Test_Result
1. Standard methodology from Statistics is to throw

away data
2. Assign missing value to the most common value at

node n
3. Alternatively, assign missing value to the most

common value at node n for examples with the same
target value

4. Assign probability to each possible value, estimated
by frequencies at node n

Missing Attribute II

• Latter tack, can be subdivided again later in
the tree

• Same approach can be used to classify
examples

Attributes with Differing Costs

• Temperature, BiopsyResult, Pulse,
BloodTestResults

• Prefer decision trees that use low-cost attributes
where possible
– Divide Gain by the cost of the attribute
– Do not guarantee optimal cost-senstive decision tree,

but bias the search in favor of low cost attributes

Differing Costs II

• Robot domain -

• Where w∈{0,1} is a constant that
determines the relative important of cost
versus information gain - medical domain

!

Gain
2
(S,A)

Cost(A)

!

2
Gain(S,A)

"1

(Cost(A) +1)
w

Summary
• Decision Trees are practical for discrete-valued functions,

grows tree from root down, selecting next best attribute at
each new node added to tree.

• ID3 searches complete hypothesis space. It can represent
any discrete-valued function defined over discrete values
instances, therefore it avoids the problem of the target
function not being in the hypothesis space.

• Inductive Bias implicit in ID3 is preference for smaller
trees, only grows as large as needed to classify training
examples.

Summary continued

• Overfitting data is an important issue. Therefore
methods for post-pruning are important.

• Very large variety of extensions: post-pruning,
handling real-valued attributes, accommodating
missing attribute values, incrementally refining
decision trees, other attribute selection measures,
considering costs associated with instance
attributes (or target values).

