Decision Tree Learning

Patricia J Riddle Computer Science 367

Decision Tree Learning

- Discrete valued target functions Classification problems
- Represented as sets of if-then rules to improve human readability
- Used in many success stories
- Classify instances by sorting them down the tree
 - Each internal node is a test on some attribute
 - Each branch is one possible value for that test
 - Each leaf specifies classification value

Learned Rules

- Outlook=Sunny^Humidity=High->PlayTennis=No
- Outlook=Sunny^Humidity=Normal->PlayTennis=Yes
- Outlook=Overcast→PlayTennis=Yes
- Outlook=Rain^Wind=Strong->PlayTennis=No
- Outlook=Rain \Wind=Weak \PlayTennis=Yes

When to use Decision Tree Learning

- Instances are represented by attribute value pairs (can be real valued).
- The target value has discrete output values (no need to be binary, some extensions even handle real valued targets).
- Disjunctive descriptions may be required
- The training data
 - may contain errors errors in classification and errors in attribute values
 - may contain missing attribute values

ID3 Algorithm

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- Create a *Root* node for the tree
- If all *Examples* are positive, Return the single-node tree *Root*, with label = +
- If all *Examples* are negative, Return the single-node tree *Root*, with label = -
- If *Attributes* is empty, Return the single-node tree *Root*, with label = most common value of *Target_attribute* in *Examples*
- Otherwise Begin
 - $A \leftarrow$ the attribute from *Attributes* that best^{*} classifies *Examples*
 - The decision attribute for $Root \leftarrow A$
 - For each possible value, v_i , of A,
 - Add a new tree branch below *Root*, corresponding to the test $A = v_i$
 - Let $Examples_{v_i}$ be the subset of Examples that have value v_i for A
 - If $Examples_{v_i}$ is empty
 - Then below this new branch add a leaf node with label = most common value of *Target_attribute* in *Examples*
 - Else below this new branch add the subtree ID3(*Examples_{vi}*, *Target_attribute*, *Attributes* – {A}))

- End
- Return Root

^{*} The best attribute is the one with highest *information gain*, as defined in Equation (3.4).

What Attribute is the Best Classifier?

- Entropy (from information theory)
 - Measures the impurity of an arbitrary collection of examples
- Entropy(S)=- $p_{\oplus}\log_2 p_{\oplus}$ - $p_{\ominus}\log_2 p_{\ominus}$
 - for a boolean classification where p_{\oplus} is the proportion of positive examples in S and p_{\ominus} is the proportion of negative examples in S.
 - In all calculations involving entropy we define 0log0 to be 0

Entropy

- Entropy(9+,5-)=-(9/14) $\log_2(9/14)$ -(5/14) $\log_2(5/14)$ =.94
 - If all members of S are in the same class Entropy(S)=0
 - If there is an equal number of positive and negative instances in S then Entropy(S)=1
- Entropy specifies the minimum number of bits of information needed to encode the classification of an arbitrary member of s

General Entropy Formula

- Generally, $Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$
 - For example if there are 4 classes and the set is split evenly, 2 bits will be needed to encode the classification of an arbitrary member of S.
 - If it is split less evenly an average message length of less then 2 can be used.

Entropy Function

FIGURE 3.2

The entropy function relative to a boolean characteristic as the proportion, p_{\oplus} , of positive example in between 0 and 1.

Information Gain

$$Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

- Where Values(A) is the set of possible values for the attribute A and S_v is the subset of S for which attribute A has value v.
- Information Gain is the expected reduction in entropy caused by knowing the value of attribute A.

Information Gain Intuition

- Information Gain is the information provided about the target function value, given the value of some other attribute A.
- The value of Gain(S,A) is the number of bits saved when encoding the target value of an arbitrary member S, by knowing the value of A.

Information Gain Example

- Of our 14 examples suppose 6 positive and 2 negative have Wind=Weak.
- Values(Wind)=Weak,Strong

$$S=[9+,5-]$$

 $S_{weak} \leftarrow [6+,2-]$
 $S_{strong} \leftarrow [3+,3-]$

Information Gain Example II

 $Gain(S,Wind) = Entropy(S) - \sum_{v \in \{weak, strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$

The information gain by sorting the 14 examples by Wind is:

 $Entropy(S) - (8/14)Entropy(S_{Weak}) - (6/14)Entropy(S_{Strong})$ =0.940-(8/14)0.811-(6/14)1.00 =0.048

Decision Tree Example

- ID3 uses Information Gain to select the best attribute at each step in growing the tree.
- Gain(S,Outlook)=0.246
- Gain(S,Humidity)=0.151
- Gain(S,Wind)=0.048
- Gain(S,Temperature)=0.029

Example Continued

Gain (S. Humidity)

= .940 - (7/14).985 - (7/14).592= .151 Gain (S, Wind) = .940 - (8/14).811 - (6/14)1.0 = .048

Which attribute should be tested here?

 $S_{sunny} = \{D1, D2, D8, D9, D11\}$

 $Gain (S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 + .970$ $Gain (S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$ $Gain (S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

Searching in Decision Trees

- ID3 can be seen as searching the space of possible decision trees:
 - Simple to complex hill-climbing search
 - Complete hypothesis space of finite discretevalued functions
 - ID3 maintains only a single current hypothesis

Searching II

- Can't tell how many alternative decision trees are consistent with the available training data
- Can't pose queries for new instances that optimally resolve the competing hypothesis
- Pure ID3 performs no backtracking can converge to local optimum
- ID3 not incremental less sensitive to errors in individual training instances easily extended to handle noisy data

FIGURE 3.5

Hypothesis space search by ID3. ID3 searches through the space of possible decision trees from simplest to increasingly complex, guided by the information gain heuristic.

Inductive Bias in Decision Tree Learning

- Much harder to define because of heuristic search
 - Shorter trees are preferred over long ones.
 - Trees that place high information gain attributes close to the root are preferred over those that do not.

Restriction Biases and Preference Biases

- ID3 *incompletely searches a complete hypothesis space* from simple to complex hypothesis. Its bias is solely a consequence of the ordering of hypothesis searched. Its hypothesis space introduces no additional bias - *preference or search bias*.
- Candidate-Elimination *completely searches an incomplete hypothesis space.* Its bias is solely a consequence of the expressive power of its hypothesis representation. Its search strategy introduces no additional bias *restriction or language bias.*

What is the Best Bias?

- A preference bias is more desirable
- First learner
 - restriction bias (linear function),
 - preference bias (LMS algorithm for parameter tuning)

Occam's razor

- Prefer the simplest hypothesis that fits the data.
- Why?
- Fewer short hypothesis then long ones it is less likely that one will find a short hypothesis that coincidently fits the training data
- This is really rubbish!!!!

Occam's razor is Cut

- "prefer decision trees containing exactly 17 leaf nodes with 11 nonleaf nodes, that use the decision attribute A1 at the root and test attributes A2 through A11, in numerical order.
- There are relatively few such trees and we might argue (by the same reasoning above) that our a priori chance of finding one consistent with an arbitrary set of data is therefore small."
- Another problem based on internal learner's representation

Avoiding Overfitting

- Noise in data,
- number of training instances too small
- Given a hypothesis space H, a hypothesis h∈H is said to overfit the training data if there exists some alternative hypothesis h'∈H, such that h has a smaller error than h' over the training examples, but h' has a smaller error than h over the entire distribution of instances.
- Pretty useless definition not causal

Overfitting in Decision Trees

Approaches to Overfitting

- Stop growing tree earlier
- Post-prune the tree
- Separate set of examples -
 - training and validation set approach even if the training set is mislead by random errors the validation set is unlikely to exhibit the same random fluctuations -2/3 training, 1/3 validation
- Statistical test
- Measure for complexity of encoding

Reduced Error Pruning

- Consider each node for pruning
- Pruning = removing the subtree at that node, make it a leaf and assign the most common class at that node
- A node is removed if the resulting tree performs no worse then the original on the validation set removes coincidences and errors

Reduced Error Pruning II

- Nodes are removed iteratively choosing the node whose removal most increases the decision tree accuracy on the graph.
- Pruning continues until further pruning is harmful.
- Uses training, validation & test sets
 effective approach if a large amount of data is available

Rule Post Pruning

- 1. Infer decision tree from training set
- 2. Convert tree to rules one rule per branch
- 3. Prune each rule by removing preconditions that result in improved estimated accuracy
- 4. Sort the pruned rules by their estimated accuracy and consider them in this sequence when classifying unseen instances

Improved Estimated Accuracy

- 1. Calculate the rule accuracy over training data
- 2. Calculate the standard deviation assuming a binomial distribution
- 3. For a given confidence interval, lower bound estimate is taken as measure of rule performance

Improved Estimated Accuracy II

- For large data sets the estimated accuracy is very close to the observed whereas it grows further away as the data set size decreases
- Not statistically valid, but found useful in practice

Why Convert to Rules?

- Allows distinguishing among different contexts in which a node might be used
- Removes distinction between attribute tests near the root versus leafs
 - no messy bookkeeping
- Easier for people to understand

Continuous Valued Attributes?

- Dynamically creating new discrete valued attributes A_c that is true if A < c
 - 1. Sort examples according to the continuous attribute value
 - 2. Identify adjacent examples that differ in their target classifications
 - 3. Generate candidate threshold midway between these points
 - 4. Calculate the information gain of each candidate and pick best
 - 5. Dynamically created boolean attributes to compete with others to appear in tree

Continuous Valued Attributes II

- The value of c that maximizes information gain must be one of these points
- Many other approaches

Example

Temperature	40	48	60	72	80	90
PlayTennis	No	No	Yes	Yes	Yes	No

- (48+60)/2 = 54
- (80+90)/2 = 85
- Temperature_{>54}, Temperature_{>85}

Other Measures for Picking Attributes

- Information Gain has natural bias towards attributes with many values over ones with few
 - For instance Date attribute has highest information gain
- Use Gain Ratio

Gain Ratio

• Entropy of S with respect to the values of A $GainRatio(S,A) \equiv \frac{Gain(S,A)}{SplitInfo(S,A)}$

$$SplitInfo(S,A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

Gain Ratio Intuition

- If attribute A splits the examples each into separate unique values (Date), SplitInfo = $\log_2 n$
- If attribute B splits the examples in half, SpiltInfo=1
- Then if attributes A and B have the same Gain then B will clearly score higher

Problems with Gain Ratio

- If |S_i| ≈|S|, then GainRatio is undefined or very large
- To avoid selecting attributes on this basis
 - 1. Calculate Gain of each attribute
 - 2. Calculate GainRatio only on attributes with above average Gain
 - 3. Choose best GainRatio

Problems with Gain Ratio II

- Many other evaluation functions
- Distance metric Lopez de Mantaras, 1991
 - Distance between our partition and the perfect partition
 - Not biased by number of values for an attribute

Missing Attribute Values in Training Examples

- Blood-Test_Result
 - 1. Standard methodology from Statistics is to throw away data
 - 2. Assign missing value to the most common value at node n
 - 3. Alternatively, assign missing value to the most common value at node n for examples with the same target value
 - 4. Assign probability to each possible value, estimated by frequencies at node n

Missing Attribute II

- Latter tack, can be subdivided again later in the tree
- Same approach can be used to classify examples

Attributes with Differing Costs

- Temperature, BiopsyResult, Pulse, BloodTestResults
- Prefer decision trees that use low-cost attributes where possible
 - Divide Gain by the cost of the attribute
 - Do not guarantee optimal cost-sensitive decision tree, but bias the search in favor of low cost attributes

Differing Costs II

• Robot domain -

$$\frac{Gain^2(S,A)}{Cost(A)}$$

$$2^{Gain(S,A)} - 1$$

$$(Cost(A) + 1)^w$$

• Where w∈{0,1} is a constant that determines the relative important of cost versus information gain - medical domain

Summary

- Decision Trees are practical for discrete-valued functions, grows tree from root down, selecting next best attribute at each new node added to tree.
- ID3 searches complete hypothesis space. It can represent any discrete-valued function defined over discrete values instances, therefore it avoids the problem of the target function not being in the hypothesis space.
- Inductive Bias implicit in ID3 is *preference* for smaller trees, only grows as large as needed to classify training examples.

Summary continued

- Overfitting data is an important issue. Therefore methods for post-pruning are important.
- Very large variety of extensions: post-pruning, handling real-valued attributes, accommodating missing attribute values, incrementally refining decision trees, other attribute selection measures, considering costs associated with instance attributes (or target values).