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Concept Learning
• Much of learning involves acquiring general concepts from

specific training examples

• Each concept can be viewed as describing some subset of
the objects or events defined over a larger set

• Alternatively each concept can be thought of as a boolean-
valued function defined over this larger set

• Concept learning - inferring a boolean-valued function
from training examples of its input and output



Concept Learning Example
• “Days on which my friend Aldo enjoys his favorite water sport”

yeschangecoolstronghighwarmsunny

nochangewarmstronghighcoldrainy

yessamewarmstronghighwarmsunny

yessamewarmstrongnormalwarmsunny

EnjoyForecastWaterWindHumidTempSky



Hypothesis Representation

• Conjunction of constraints on instance attributes

• Specifically, vector of six constraints with
– ? - any value acceptable
– Single required value (Warm)
– 0 - no value acceptable

• Most general hypothesis <?,?,?,?,?,?>
• Most specific hypothesis <0,0,0,0,0,0>



Notation
• The set of items over which the concept is defined

are called “instances” denoted by X.

• The “target concept” c: X -> {0,1}

• The “training examples” D:<x,c(x)>,
– If c(x)=1 then positive example.
– If c(x)=0 then negative example.



Notation II
• The problem faced by learner is to hypothesize or estimate

c.

• H is the set of all possible hypotheses. H is determined by
the human designers choice of hypothesis representation

• Each h: X->{0,1}

• Learners goal is to find h such that h(x)=c(x)∀x∈X.
(notice this is not ∀d∈D!!!)



Our Example
• Instances X

– Sky (values Sunny, Cloudy, or Rainy)
– Temp (values Warm or Cold)
– Humidity (Normal or High)
– Wind (Strong or Weak)
– Water (Warm or Cool)
– Forecast (Same or Change)

• Target Concept c: Enjoy: X -> {0,1}
• Training Examples D: see table
• Hypothesis H: conjunction of 6 constraints
    (?, 0, or value)



The Inductive Hypothesis

• Any hypothesis found to approximate the
target function well over a sufficiently large
set of training examples will also
approximate the target function well over
unobserved examples.



Concept Learning as Search
• Searching through a large space of hypotheses implicitly

defined by the hypothesis representation (same for more
general learning)

• The hypothesis representation defines the space of
hypotheses the program can ever represent and therefore
can ever learn

• For example, Sky has 3 possible values and Temp,
Humidity, Wind, Water, and Forecast each have 2 possible
values.



Size of Search Space
• X contains 3x2x2x2x2x2=96 distinct instances

• H contains 5x4x4x4x4x4=5120 syntactically distinct
hypothesis. But notice any hypothesis containing one or
more 0s represents the empty set of positive instances.

• Therefore H contains 1+4x3x3x3x3x3=973 semantically
distinct hypothesis

• This is a very small finite hypothesis space.  Most practical
learning tasks have much larger or infinite hypothesis
spaces.



General-to-Specific Ordering

• By taking advantage of naturally occurring
structure, we can design learning algorithms that
exhaustively search even infinite hypothesis
spaces without explicitly enumerating every
hypothesis

• For instance, general-to-specific ordering
– h1=<sunny,?,?,strong,?,?>
– h2=<sunny,?,?,?,?,?>



General-to-Specific Ordering II
• Any instance classified positive by h1 will be

classified positive by h2, therefore h2 is more
general than h1.

• Let hj and hk be boolean-valued functions defined
over X.  Then hj is more-general-than-or-equal-to
hk if and only if (∀x∈X)[(hk(x)=1) -> (hj(x)=1)]

• More-general-than and more-specific-than are also
useful



Hypothesis Search Space



Hypothesis Partial Ordering

• h2 is more general than h1
• h2 is more general than h3
• Neither h1 nor h3 is more general than the

other

• More-general-than-or-equal-to defines a
partial order over the hypothesis space H
(reflexive, antisymmetric, and transitive)



Maximally Specific Hypothesis

• Begin with the most specific possible hypothesis
in H, generalise this hypothesis each time it fails
to cover an observed positive training example

– h <- <0,0,0,0,0,0>
– h <- <sunny,warm,normal,strong,warm,same>
– h < - <sunny,warm,?,strong,warm,same>
– h <- <sunny,warm,?,strong,?,?>



Maximally Specific Hypothesis II

• Find-S algorithm ignores negative examples

• If the hypothesis space H contains a hypothesis
which describes the true target concept c & the
training data contains no errors, then the current
hypothesis h can never require a revision in
response to a negative example - Big If



Find-S Algorithm



Partial Ordering



Questions Remain

• Has the learner converged?

• Why prefer the most specific hypothesis?

• Are training examples consistent?

• What if there are several maximally specific
consistent hypothesis?



Version Spaces
• Output description of the set of all hypotheses consistent with

the training examples

• Computed without explicit enumeration using more-general-
than partial ordering

• A hypothesis h is consistent with a set of training examples D
if and only if h(x)=c(x) for each example <x,c(x)> in D

• A version space denoted VSH,D with respect to hypothesis
space H and training examples D is the subset of hypotheses
from H consistent with the training examples in D.



List-then-Eliminate Algorithm



Compact Representation for
Version Spaces



General Specific Boundaries

• 6 different hypotheses
• The general boundary G, with respect to

hypothesis space H and training data D, is the set
of maximally general members of H consistent
with D.

• The specific boundary S, with respect to
hypothesis space H and training data D, is the set
of minimally general (I.e., maximally specific)
members of H consistent with D.



Candidate Elimination Algorithm



Training Examples 1 & 2



Training Example 3



Training Example 4



Final Version Space



What if first instance is negative?

1. <Rainy,Cold,High,Strong,Warm,Change>
, EnjoySport=No

– S1=<0,0,0,0,0,0>
– G1={<Sunny,?,?,?,?,?>, <Cloudy,?,?,?,?,?>,

<?,Warm,?,?,?,?>, <?,?,Normal,?,?,?>,
<?,?,?,Light,?,?>, <?,?,?,?,Cool,?>,
<?,?,?,?,?,Same>}



Singular S sets

• Why try to remove any hypothesis that is
inconsistent from the S set?

• Caused by conjunctive representation



Version Spaces with Disjuncts

S0=<0,0,0,0,0,0>
G0=<?,?,?,?,?,?>

1. <Sunny,Warm,Normal,Strong,Warm,Same>,
EnjoySport=Yes

S1=<Sunny,Warm,Normal,Strong,Warm,Same>
G1=<?,?,?,?,?,?>



VS with Disjuncts II

2 <Sunny,Warm,High,Strong,Warm,Same>,
EnjoySport=Yes

S2=<Sunny,Warm,Normal,Strong,Warm,Same>
∨ <Sunny,Warm,High,Strong,Warm,Same>

G2=<?,?,?,?,?,?>



VS with Disjuncts III

3  <Rainy,Cold,High,Strong,Warm,Change>,
EnjoySport = No

S3=<Sunny,Warm,Normal,Strong,Warm,Same> ∨
<Sunny,Warm,High,Strong,Warm,Same>

G3={<Sunny,?,?,?,?,?> ∨ <?,Warm,?,?,?,?>,
<Sunny,?,?,?,?,?> ∨ <?,?,?,?,?,Same>,
<?,Warm,?,?,?,?> ∨ <?,?,?,?,?,Same>}



VS with Disjuncts IV

4 <Sunny,Warm,High,Strong,Cool,Change>,
EnjoySport=Yes

S4={<Sunny,Warm,?,Strong,?,?> ∨
<Sunny,Warm,High,Strong,Warm,Same>,
<Sunny,Warm,Normal,Strong,Warm,Same> ∨
<Sunny,Warm,High,Strong,?,?>}

G4={<Sunny,?,?,?,?,?> ∨ <?,Warm,?,?,?,?>,
<Sunny,?,?,?,?,?> ∨ <?,?,?,?,?,Same>,
<?,Warm,?,?,?,?> ∨ <?,?,?,?,?,Same>}



VS with Disjuncts V
5 <Sunny,Warm,Normal,Strong,Cool,Change>,

EnjoySport=No

S5 = <Sunny,Warm,Normal,Strong,Warm,Same> ∨
<Sunny,Warm,High,Strong,?,?>

G5 ={<?,Warm,?,?,?,Same> ∨ <?,?,?,?,?,Same>,
<?,Warm,?,?,Warm,?> ∨ <?,?,?,?,?,Same>,
<?,Warm,High,?,?,?> ∨<?,?,?,?,?,Same>,
<Sunny,?,High,?,?,?> ∨ <?,?,?,?,?,Same>,
<Sunny,?,?,?,Warm,?> ∨ <?,?,?,?,?,Same>,
<Sunny,?,?,?,?,Same> ∨ <?,?,?,?,?,Same>,
<Sunny,?,High,?,?,?> ∨ <?,Warm,High,?,?,?>,
<Sunny,?,?,?,Warm,?> ∨ <?,Warm,High,?,?,?>, <Sunny,
? High,?,?,?> ∨ <?,Warm,?,?,Warm,?>}



Properties of Candidate-Elimination Algorithm

• Independent of the order in which the training data is
presented

• S and G boundaries move monotonically closer to each
other

• Will converge if
1. There are no errors in the training examples
2. There is some hypothesis in H that correctly describes the target

concept
• Can determine when sufficient training examples have

been observed to converge, S and G are identical
• Can detect errors or bad representation by convergence

to the empty version space



Requesting Training Examples

<Sunny,Warm,Normal,Light,Warm,Same>

• Generate instances that satisfy 1/2 the
hypotheses

• Correct target concept found in log2|VS|
experiments

• This is not always possible!



Partially Learned Concepts

• What if run out of training data before convergence?
• Can still classify new data!!

• New instance will be classified as positive by all the
hypotheses if and only if the instance satisfies every
member of S

• New instance will be classified as negative by all the
hypotheses if and only if the instance satisfies none of the
members of G

• Can use voting if not equally split



Classifying with Partially Learned Concepts

?SameWarmStrongNormalColdSunnyD

?SameWarmLightNormalWarmSunnyC

?SameWarmLightNormalColdRainyB

?ChangeCoolStrongNormalWarmSunnyA

EnjoySportForecas
t

WaterWindHumidityTempSkyInstance



Inductive Bias
• What if the target concept is not in the hypothesis space?

• Use a hypothesis space that includes every possible
hypothesis!!!

• Does the size of this space influence the ability to
generalize to unobserved instances?

• Does it influence the number of training examples that
must be observed?



An Unbiased Learner
• Can’t represent “Sky = Sunny or Sky = Cloudy”
• Provide a hypothesis space capable of representing every

teachable concept - power set of X - set of all subsets
• Instance space = 96, power set = 296 ≈ 1028

• Can allow arbitrary disjunctions

• Now completely unable to generalise beyond the
observed examples

• Can’t even use voting - unobserved instance always divide
space in half



Futility of Bias-Free Learning

• A learner that makes no a priori assumptions
regarding the identity of the target concept has no
rational basis for classifying any unseen instances.
(just a database - rote learning)

• Candidate-Elimination algorithm was able to
generalise beyond the observed training examples
because it was biased by the implicit assumption
that the target could be represented as a
conjunction of target values



Inductive Bias
• Consider a concept learning algorithm L for the set of

instances X.
– Let c be an arbitrary concept defined over X, and let Dc =

{<x,c(x)>} be an arbitrary set of training examples of c.
– Let L(xi,Dc) denote the classification assigned to the instance xi by

L after training on the data Dc.
• The inductive bias of L is any minimal set of assertions B

such that for any target concept c and corresponding
training examples Dc (∀xi ∈ X)[(B ∧ Dc ∧ xi) |- L(xi,Dc)]

• Inductive bias of the Candidate-Elimination algorithm: The
target concept c is contained in the given hypothesis space
H.



Inductive versus Deductive



Inductive Biases of Algorithms
– Rote Learner - no inductive bias

– Candidate Elimination - the target concept can be represented in its
hypothesis space - can classify some instances that the Rote
Learner will not.

– Find-S - in addition that all instances are negative instances until
the opposite is entailed by its other knowledge.

• More strongly biased methods make more inductive leaps -
Is this good or bad??



Summary
• Concept learning can be seen as search.

• General-to-Specific partial ordering of hypotheses can be used to
organize search

• Find-S and Candidate-Elimination algorithms

• Inductive learning algorithms are able to classify unseen examples
only because of their implicit inductive bias for selecting one
consistent hypothesis over another

• An unbiased learner cannot make inductive leaps to classify unseen
examples.


