HUMAN-COMPUTER INTERACTION

THIRD EDITION

Lecturer: Gerald Weber Based on Dix et al. Chapter 15

What is Task Analysis?

Methods to analyse people's jobs:

- -what people do
- -what things they work with
- -what they must know



An Example

- in order to clean the house
 - get the vacuum cleaner out
 - fix the appropriate attachments
 - clean the rooms
 - when the dust bag gets full, empty it
 - put the vacuum cleaner and tools away
- must know about:
 - vacuum cleaners, their attachments, dust bags, cupboards, rooms etc.

Approaches to task analysis

- Task decomposition
 - splitting task into (ordered) subtasks
- Knowledge based techniques
 - what the user knows about the task and how it is organised
- Entity/object based analysis
 - relationships between objects, actions and the people who perform them
- lots of different notations/techniques

general method

- observe
- collect unstructured lists of words and actions
- organize using notation or diagrams

Differences from other techniques

Systems analysis vs. Task analysis

system design - focus - the user

Cognitive models vs. Task analysis

internal mental state - focus - external actions

practiced `unit' task - focus - whole job

Task Decomposition


Aims:

describe the actions people do structure them within task subtask hierarchy describe order of subtasks

Variants:

Hierarchical Task Analysis (HTA)
most common
CTT (CNUCE, Pisa)
uses LOTOS temporal operators

Textual HTA description

Hierarchy description ...

- 0. in order to clean the house
 - 1. get the vacuum cleaner out
 - 2. get the appropriate attachment
 - 3. clean the rooms
 - 3.1. clean the hall
 - 3.2. clean the living rooms
 - 3.3. clean the bedrooms
 - 4. empty the dust bag
 - 5. put vacuum cleaner and attachments away

... and plans

Plan 0: do 1 - 2 - 3 - 5 in that order. when the dust bag gets full do 4

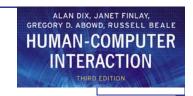
Plan 3: do any of 3.1, 3.2 or 3.3 in any order depending on which rooms need cleaning

N.B. only the plans denote order

Generating the hierarchy

- 1 get list of tasks
- 2 group tasks into higher level tasks
- 3 decompose lowest level tasks further

Stopping rules


How do we know when to stop?

Is "empty the dust bag" simple enough?

Purpose: expand only relevant tasks

Motor actions: lowest sensible level

Tasks as explanation

- imagine asking the user the question: what are you doing now?
- for the same action the answer may be: typing ctrl-B making a word bold emphasising a word
 - editing a document writing a letter preparing a legal case



Diagrammatic HTA

```
make a
                                                            cup of tea
                                                                   plan 0.
                                                                       do 1
                                                                       at the same time, if the pot is full 2
                                                                       then 3 - 4
                                                                       after four or five minutes do 5
                      2.
                                                                                                                6.
                                                                        pour in
                                                                                             wait 4 or 5
                                              put tea leaves
    boil water
                          empty pot
                                                                                                                     pour tea
                                                                     boiling water
                                                  in pot
                                                                                              minutes
           plan 1.
               1.1 - 1.2 - 1.3
               when kettle boils 1.4
1.1.
                                             1.3.
                                                                   1.4.
                      1.2.
                          put kettle
                                              wait for kettle
                                                                      turn off gas
    fill kettle
                                                  to boil
                           on stove
```

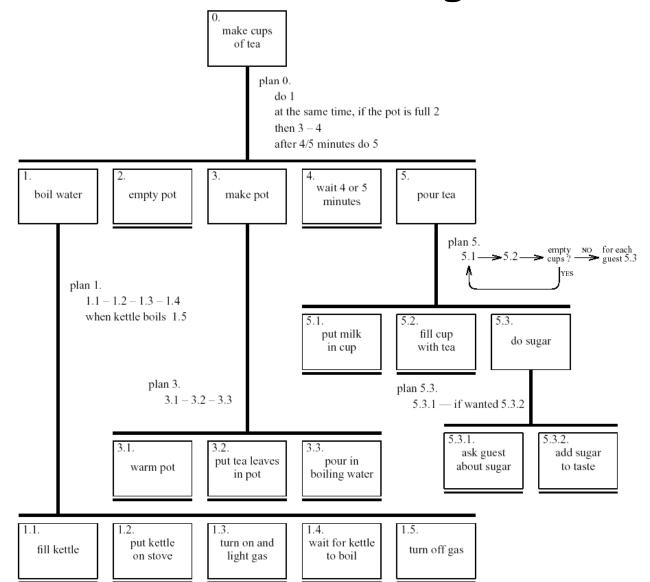

Refining the description

Given initial HTA (textual or diagram)
How to check / improve it?

Some heuristics:

paired actions e.g., where is `turn on gas'

restructure e.g., generate task `make pot'


balance e.g., is `pour tea' simpler than making pot?

generalise e.g., make one cup or more



Refined HTA for making tea

Types of plan

fixed sequence - 1.1 then 1.2 then 1.3

optional tasks - if the pot is full 2

wait for events - when kettle boils 1.4

cycles - do 5.1 5.2 while there are still empty cups

time-sharing - do 1; at the same time ...

discretionary - do any of 3.1, 3.2 or 3.3 in any order

mixtures - most plans involve several of the above

Knowledge Based Analyses

Focus on:

Objects – used in task

Actions - performed

+ Taxonomies –represent levels of abstraction



Knowledge-Based Example ...

```
motor controls
   steering steering wheel, indicators
   engine/speed
                ignition, accelerator, foot brake
       direct
       gearing clutch, gear stick
   lights
       external headlights, hazard lights
       internal courtesy light
  wash/wipe
       wipers front wipers, rear wipers
       washers front washers, rear washers
  heating temperature control, air direction,
           fan, rear screen heater
  parking hand brake, door lock
  radio numerous!
```


Task Description Hierarchy

Three types of branch point in taxonomy:

```
XOR – normal taxonomy object in one and only one branch
```

AND – object must be in both multiple classifications

OR weakest case can be in one, many or none

Larger TDH example

N.B. '/ | {' used for branch types.

More on TDH

Uniqueness rule:

– can the diagram distinguish all objects?

e.g., plate is:

kitchen item/shape(flat)/function{preparation,dining(for food)}/
nothing else fits this description

Actions have taxonomy too:

kitchen job OR
|____ preparation beating, mixing
|___ cooking frying, boiling, baking
|___ dining pouring, eating, drinking

Sources of Information

Documentation

 N.B. manuals say what is supposed to happen but, good for key words and prompting interviews

Observation

formal/informal, laboratory/field (see Chapter 9)

Interviews

– the expert: manager or worker? (ask both!)

Uses - manuals & documentation

Conceptual Manual

- from knowledge or entity-relations based analysis
- good for open ended tasks

Procedural 'How to do it' Manual

- from HTA description
- good for novices
- assumes all tasks known

To make cups of tea

boil water — see page 2 empty pot make pot — see page 3 wait 4 or 5 minutes pour tea — see page 4

— page 1 —

Make pot of tea

once water has boiled

warm pot put tea leaves in pot pour in boiling water

— page 3 —

Uses - requirements & design

Requirements capture and systems design

- lifts focus from system to use
- suggests candidates for automation
- uncovers user's conceptual model

Detailed interface design

- Taxonomies suggest menu layout
- object/action lists suggest interface objects
- task frequency guides default choices
- existing task sequences guide dialogue design

NOTE. task analysis is never complete

rigid task based design ⇒ inflexible system