

Lecture 6

the human 1 of 3

Lecture 6 - the human 1

1

Remember to start on your paper prototyping

Use the Tutorials

- Bring coloured pencil, felts etc
- · Scissor, cello tape, glue
- Imagination

Lecture 6 - the human 1

2

::

Lecture 6 - the human 1

the human

- Lecture 6 (today)
 - Information i/o ...
 - · visual, auditory, haptic, movement
- Lecture 7
 - Information stored in memory
 - · sensory, short-term, long-term
- Lecture 8
 - Information processed and applied
 - · reasoning, problem solving, skill, error
 - Emotion influences human capabilities
 - Each person is different

Lecture 6 - the human 1

Lecture 6 - the human 1

5

The human processor

- Input
 - senses
- Process
 - Cognition
 - Knowledge
 - Skills
 - · Reasoning
- Output
 - Memory
 - Actions

Lecture 6 - the human 1

_

Senses

- Vision
- Hearing
- · Touch (haptics)
- Smell
- Taste

*

Vision

Two stages in vision

- physical reception of stimulus
- processing and interpretation of stimulus

Lecture 6 - the human 1

7

The Eye - physical reception

- mechanism for receiving light and transforming it into electrical energy
- · light reflects from objects
- · images are focused upside-down on retina
- retina contains rods for low light vision and cones for colour vision
- ganglion cells (brain!) detect pattern and movement
- Interesting web site http://www.hhmi.org/senses

Lecture 6 - the human

Interpreting the signal

- · Size and depth
 - visual angle indicates how much of view object occupies
 - (relates to size and distance from eye)
 - visual acuity is ability to perceive detail (limited)
 - familiar objects perceived as constant size (in spite of changes in visual angle when far away)
 - cues like overlapping help perception of size and depth
- What does this mean for items on the screen periphery?

Lecture 6 - the human 1

10

12

Interpreting the signal (cont)

- Brightness
 - subjective reaction to levels of light
 - affected by luminance of object
 - measured by just noticeable difference
 - visual acuity increases with luminance as does flicker
- Colour
 - made up of hue, intensity, saturation
 - cones sensitive to colour wavelengths
 - blue acuity is lowest
 - 8% males and 1% females colour blind

Lecture 6 - the human 1

Interpreting the signal (cont)

- The visual system compensates for:
 - movement
 - changes in luminance.
- · Context is used to resolve ambiguity
- Optical illusions sometimes occur due to over compensation

Lecture 6 - the human 1

Reading

- · Several stages:
 - visual pattern perceived
 - decoded using internal representation of language
 - interpreted using knowledge of syntax, semantics, pragmatics
- Reading involves saccades (rapid jerky movements) and fixations (accounting for 94% of the time!)
- · Perception occurs during fixations
- Word shape is important to recognition
- Negative contrast improves reading from computer screen

Lecture 6 - the human 1

14

When you are surfing the web this week

- If you have trouble finding something you know must be on a page
- · Look to see why that is
 - Is it right on an edge?
 - Is the colour wrong?
 - Is the font too small?
- Put some examples up on the class forum link and your comment as to what was good/bad about the visual layout

Lecture 6 - the human 1

What if

- Your visual attention is need for another activity
 - Driving & cell phone / GPS navigation....
- Were colour blind?
- Needed reading glasses?
- Had really poor eye sight that couldn't corrected by glasses?
- You were blind?

Lecture 6 – the human 1

17

Hearing (cont)

- Humans can hear frequencies from 20Hz to 15kHz
 - less accurate distinguishing high frequencies than low
 - Higher frequencies disappear as you get older
- · Auditory system filters sounds
 - can attend to sounds over background noise.
 - for example, the cocktail party phenomenon.
 - Hearing aids disrupt this filtering

Lecture 6 - the human 1

Hearing

- Provides information about environment: distances, directions, objects etc.
- Physical apparatus:
 - outer ear protects inner and amplifies sound
 - middle ear transmits sound waves as vibrations to inner ear
 - inner ear chemical transmitters are released and cause impulses in auditory nerve
- Sound
 - pitchloudnessamplitudetimbretype or quality

Lecture 6 - the human 1

18

What if....

- You are in a noisy environment
 - Night clubbing
 - Phone call/ text message?
- Your hearing is below average
- · You are deaf

Lecture 6 - the human 1

Touch

- Provides important feedback about environment
- · May be key sense for someone who is visually impaired
- Stimulus received via receptors in the skin:
 - Thermoreceptors: heat and cold
 - Nociceptors: pain
 - Mechanoreceptors: pressure
- Some areas more sensitive than others e.g. fingers
- · Kinethesis awareness of body position
 - Affects comfort and performance
- Little experiment
 - Touch when reading

Lecture 6 - the human 1

21

*

What if...

- Keyboard, mouse
- You are a paraplegic?
- http://www.abilityhub.com/mouse/eyegaze.htm
- Eye tracking software/hardware also used for usability studies to track users focus points

Touch devices

teresting research in the areas of sound and touch

- Prof Stephen Brewster http://www.dcs.gla.ac.uk/~stephen/
- UoA has a PHANToM haptic device
 - Beryl Plimmer has some students working with it a the moment trying to emulate the feel of 'soft tissue'
- We live in the early days of touch in humancomputer interaction

Lecture 6 - the human 1

22

Movement

- Time taken to respond to stimulus: reaction time + movement time
- Movement time dependent on age, fitness etc.
- Fatigue (or alcohol) can increase reaction time; practice can improve reaction time and accuracy when performing quickly
- Reaction time dependent on stimulus type:
 - visual ~ 200ms
 - auditory ~ 150 ms
 - pain ~ 700ms

Lecture 6 - the human 1

23

Lecture 6 – the human 1

Movement (cont)

 Fitts' Law describes the time taken to hit (e.g., move a mouse cursor to) a screen target:

$$Mt = a + b \log_2(D/S + 1)$$

where: a and b are empirically determined constants

Mt is movement time

D is Distance S is Size of target

⇒ targets as large as possible distances as small as possible

Lecture 6 - the human 1

Summary

- Primary senses used for computers
 - Sight & Kinetics
- · All senses have a reaction time
- · Most senses degrade with age
- Many people have some disability
- Interactive environments for specific disabilities have often resulted in technological breakthroughs

Lecture 6 - the human 1

27

25

Smell & Taste

- We have about 4000 types of different smell receptors
- Some primitive attempts to analyse and synthesise smell
- · It is technically very difficult!
- Taste is closely associated little work in this area

Lecture 6 - the human 1