

Design to be inclusive

- And you'll get other unexpected benefits
 - Doors that slide open via sensor are good for a person with a walker... and for someone with their hands full

INTERACTION

- Wheelchair access toilet... is also handy when you have three toddlers in tow
- Audible crosswalk sound... also reminds those who aren't looking

universal design principles

HUMAN-COMPUTER INTERACTION

- · equitable use
- · flexibility in use
- simple and intuitive to use
- · perceptible information
- tolerance for error
- · low physical effort
- size and space for approach and use

- 2

How can we make our software this way?

- Use multiple modes
 - Colour, font, icon, unique sound; shortcut key and mouse/trackball (and touch screen if you can)
- Adhere to standards
 - 'straight' HTML is more friendly to reading software used by the blind than graphical rendering of text or text fragmented in tables
- Make it simple and 'idiot proof'
 - Reasonably big print, attractive, prevent errors, easy undo, good feedback on actions, self explanatory, avoid unnecessary functionality
 - Good for elderly, less-computer literate and children; and helpful for the busy, stressed and distracted, tool

Multi-Sensory Systems

- · More than one sensory channel in interaction
 - e.g. sounds, text, hypertext, animation, video, gestures,
- Used in a range of applications:
 - particularly good for users with special needs, and virtual reality
- · Will cover
 - general terminology
 - speech
 - non-speech sounds
 - handwriting
- · considering applications as well as principles

Multi-modal vs. Multi-media

- use more than one sense (or mode) of interaction

e.g. visual and aural senses: a text processor may speak the words as well as echoing them to the screen

- Multi-media systems
 - use a number of different media to communicate information

e.g. a computer-based teaching system: may use video, animation, text and still images: different media all using the visual mode of interaction; may also use sounds, both speech and non-speech: two more media, now using a different mode Usable Senses

The 5 senses (sight, sound, touch, taste and smell) are used by us every day

- each is important on its own
- together, they provide a fuller interaction with the natural world

Computers rarely offer such a rich interaction

Can we use all the available senses?

- ideally, yes
- practically no

We can use • sight • sound • touch (sometimes)

We cannot (yet) use • taste • smell

HUMAN-COMPUTER

INTERACTION

Speech

Human beings have a great and natural mastery of speech

- makes it difficult to appreciate the complexities

- it's an easy medium for communication

HUMAN-COMPUTER

Structure of Speech

phonemes

- 40 of them
- basic atomic units
- sound slightly different depending on the context they are in, these larger units are ...

allophones

- all the sounds in the language
- between 120 and 130 of them
- these are formed into ...

morphemes

- smallest unit of language that has meaning.

)

Speech Recognition Problems

- · Different people speak differently:
 - accent, intonation, stress, idiom, volume, etc.
- · The syntax of semantically similar sentences may vary.
- · Background noises can interfere.
- People often "ummm....." and "errr....."
- · Words not enough semantics needed as well
 - requires intelligence to understand a sentence
 - context of the utterance often has to be known
 - also information about the subject and speaker

e.g. even if "Errr.... I, um, don't like this" is recognised, it is a fairly useless piece of information on it's own

11

Speech (cont'd)

Other terminology:
• prosody

- prosouy
- alteration in tone and quality
- variations in emphasis, stress, pauses and pitch
- impart more meaning to sentences.
- co-articulation
 - the effect of context on the sound
 - transforms the phonemes into allophones
- syntax structure of sentences
- semantics meaning of sentences

10

HUMAN-COMPUTER

HUMAN-COMPUTER

INTERACTION

Speech Recognition: useful?

Open use, limited vocabulary systems can work satisfactorily

e.g. some voice activated telephone systems

general user, wide vocabulary systems still a problem

- · Great potential, however
 - when users hands are already occupied e.g. driving, manufacturing
 - for users with physical disabilities
 - lightweight, mobile devices

Speech Synthesis

The generation of speech

Useful

natural and familiar way of receiving information

Problems

- similar to recognition: prosody particularly

Additional problems

- intrusive needs headphones, or creates noise in the workplace
- transient harder to review and browse

13

INTERACTION McGurk Effect Visual 'GA' + auditory 'BA' stimulus input speech alternatives = perceived 'DA' - 'DA' seems to be the most a lot like /ga/ feasible fusion of our auditory and visual sensory inputs visual/ga/ mostly nothing like /ga Properly synchronised visual input of lip and somewhat like /da tongue motion can reinforce and improve our comprehension of the audio a lot like /da/ signal · Thus there are potential auditory /ba/ nothing like /ba/ advantages is having the visual image of a 'talking head' along with computer a lot like /ba generated speech 15

Speech Synthesis: useful?

INTERACTION

HUMAN-COMPUTER

Successful in certain constrained applications when the user:

- is particularly motivated to overcome problems
- has few alternatives

Examples:

- · screen readers
 - read the textual display to the user utilised by visually impaired people
- · warning signals
 - spoken information sometimes presented to pilots whose visual and haptic skills are already fully occupied

14

Baldi - a talking head

- Baldi generates the visual impression of a talking head to complement text-to-speech services
- Baldi is trained to a speaker by modelling the motion (in 3D over time) of points on a speaker's mouth and face as they make the various sounds of English
 - (or another language)LED markers let key points be tracked during speech
- Baldi's 'canonical head' can then be morphed to better fit an individual pattern
- See http://mambo.ucsc.edu/ pdf/cohenm_training.pdf

Tuning the head

HUMAN-COMPUTER INTERACTION

 A battery of parameters can be manually tuned to adjust the appearance of the head while pronouncing particular phonemes (sounds)

HUMAN-COMPUTER INTERACTION

19

Non-Speech Sounds

boings, bangs, squeaks, clicks etc.

- · commonly used for warnings and alarms
- Evidence to show they are useful
 - fewer typing mistakes with key clicks
 - video games harder without sound
- · Language/culture independent, unlike speech

Application - Language tutor

- Baldi is a language tutor who can make his skin transparent!
 - And illustrate tongue placement and movement
 - Advantage for
 Japanese learning
 English '\mathcal{\epsilon}' and 'r' sounds
 - Also very useful for teaching speech to the deaf (they can see how it's supposed to be done)

10

HUMAN-COMPUTER

INTERACTION

Non-Speech Sounds: useful?

HUMAN-COMPUTER INTERACTION

- · Dual mode displays:
 - information presented along two different sensory channels
 - redundant presentation of information
 - resolution of ambiguity in one mode through information in another
- · Sound good for
 - transient information
 - background status information

e.g. Sound can be used as a redundant mode in the Apple Macintosh; almost any user action (file selection, window active, disk insert, search error, copy complete, etc.) can have a different sound associated with it.

Auditory Icons

- · Use natural sounds to represent different types of object or action
- Natural sounds have associated semantics which can be mapped onto similar meanings in the interaction
 - e.g. throwing something away ~ the sound of smashing glass
- Problem: not all things have associated meanings
- · Additional information can also be presented:
 - muffled sounds if object is obscured or action is in the background
 - use of stereo allows positional information to be added

21

Farcons

- Synthetic sounds used to convey information
- Structured combinations of notes (motives) represent actions and objects
- Motives combined to provide rich information
 - compound earcons
 - multiple motives combined to make one more complicated earcon

23

SonicFinder for the Macintosh

- · items and actions on the desktop have associated sounds
- folders have a papery noise
- moving files dragging sound
- copying a problem ... sound of a liquid being poured into a receptacle rising pitch indicates the progress of the copy
- big files have louder sound than smaller ones

22

Earcons (ctd)

· family earcons

similar types of earcons represent similar classes of action or similar objects: the family of "errors" would contain syntax and operating system errors

Earcons easily grouped and refined due to compositional and hierarchical nature

touch

- · haptic interaction
 - cutaneous perception
 - · tactile sensation: vibrations on the skin
 - kinesthetics
 - · movement and position; force feedback
- information on shape, texture. resistance, temperature, comparative spatial factors
- · example technologies
 - electronic braille displays
 - force feedback devices e.g. Phantom
 - · resistance, texture

HUMAN-COMPUTER

Handwriting recognition (ctd)

- Problems
 - personal differences in letter formation
 - co-articulation effects
- · Breakthroughs:
 - stroke not just bitmap
 - special 'alphabet' Graffeti on PalmOS
- · Current state:
 - usable even without training
 - but many prefer keyboards!

27

HUMAN-COMPUTE INTERACTION

HUMAN-COMPUTER

Handwriting recognition

Handwriting is another communication mechanism which we are used to in day-to-day life

- Technology
 - Handwriting consists of complex strokes and spaces
 - Captured by digitising tablet
 - · strokes transformed to sequence of dots
 - large tablets available
 - · suitable for digitising maps and technical drawings
 - smaller devices, some incorporating thin screens to display the information
 - · PDAs such as Palm Pilot
 - · tablet PCs

26

gesture

- · applications
 - gestural input e.g. "put that there"
 - sign language
- technology
 - data glove
 - position sensing devices e.g MIT Media Room
- benefits
 - natural form of interaction pointing
 - enhance communication between signing and nonsigning users
- problems
 - user dependent, variable and issues of coarticulation

Users with disabilities

- · visual impairment
 - screen readers. SonicFinder
- · hearing impairment
 - text communication, gesture, captions
- · physical impairment
 - speech I/O, eyegaze, gesture, predictive systems (e.g. Reactive keyboard)
- speech impairment
 - speech synthesis, text communication
- dyslexia
 - speech input, output
- autism
 - communication, education

20

HUMAN-COMPUTER

Concepts and colors

8% of men and 1% of women are color blind

Green	%	Red	%	Yellow	%	Black	%	White	%
Safe	62.2	Hot	31.1	Caution	44.8	Off	53.5	Cold	71.5
Go	44.7	Danger	64.7						
On	22.3	Stop	48.5						

% of Hong Kong Chinese who associate particular concepts and colors (Courtney 86)

Green	%	Red	%	Yellow	%	Blue	%
Safe	61.4	Hot	94.5	Caution	81.1	Cold	96.1
Go	99.2	Danger	89.8			Off	31.5
		Stop	100				

% of Americans who associate particular concepts and colors (Bergum&Bergum 81)

31

... plus ...

- · age groups
 - older people e.g. disability aids, memory aids, communication tools to prevent social isolation
 - children e.g. appropriate input/output devices, involvement in design process
- · cultural differences
 - influence of nationality, generation, gender, race, sexuality, class, religion, political persuasion etc. on interpretation of interface features
 - e.g. interpretation and acceptability of language, cultural symbols, gesture and colour

30

HUMAN-COMPUTER

Conclusion

HUMAN-COMPUTER INTERACTION

- Try for universal, inclusive design as much as possible
 - You'll get unexpected benefits
- Consider speech technologies and use of sound
- Remember that we don't always perceive or think the same