chapter 10

universal design
universal design principles

- NCSW
- equitable use
- flexibility in use
- simple and intuitive to use
- perceptible information
- tolerance for error
- low physical effort
- size and space for approach and use

Multi-Sensory Systems

- More than one sensory channel in interaction
- e.g. sounds, text, hypertext, animation, video, gestures, vision
- Used in a range of applications:
- particularly good for users with special needs, and virtual reality
- Will cover
- general terminology
- speech
- non-speech sounds
- handwriting
- considering applications as well as principles

Usable Senses

The 5 senses (sight, sound, touch, taste and smell) are used by us every day

- each is important on its own
- together, they provide a fuller interaction with the natural world

Computers rarely offer such a rich interaction
Can we use all the available senses?

- ideally, yes
- practically - no

We can use • sight • sound • touch (sometimes)
We cannot (yet) use • taste • smell

Multi-modal vs. Multi-media

- Multi-modal systems
- use more than one sense (or mode) of interaction

Human beings have
e.g. visual and aural senses: a text processor may speak the words as well as echoing them to the screen
a great and natural
mastery of speech

- Multi-media systems
- use a number of different media to communicate information
e.g. a computer-based teaching system:may use video,
animation, text and still images: different media all using the
visual mode of interaction; may also use sounds, both speech and non-speech: two more media, now using a different mode
- makes it difficult to appreciate the complexities
but

- it's an easy medium for communication

Structure of Speech

phonemes

- 40 of them
- basic atomic units
- sound slightly different depending on the context they are in, these larger units are ...
allophones
- all the sounds in the language
- between 120 and 130 of them
- these are formed into ..

morphemes

- smallest unit of language that has meaning.

Speech (cont'd)

Other terminology:

- prosody
- alteration in tone and quality
- variations in emphasis, stress, pauses and pitch
- impart more meaning to sentences.
- co-articulation
- the effect of context on the sound
- transforms the phonemes into allophones
- syntax - structure of sentences
- semantics - meaning of sentences

Speech Recognition Problems

- Different people speak differently:
- accent, intonation, stress, idiom, volume, etc.
- The syntax of semantically similar sentences may vary.
- Background noises can interfere.
- People often "ummm....." and "errr....."
- Words not enough - semantics needed as well
- requires intelligence to understand a sentence
- context of the utterance often has to be known
- also information about the subject and speaker
e.g. even if "Errr.... I, um, don't like this" is recognised, it is a fairly useless piece of information on it's own

Speech Recognition: useful?

Single user or limited vocabulary systems e.g. computer dictationOpen use, limited vocabulary systems can work satisfactorilye.g. some voice activated telephone systemsgeneral user, wide vocabulary systems ...
...still a problem

- Great potential, however
- when users hands are already occupied
- for users with physical disabilities
- lightweight, mobile devices

Speech Synthesis

The generation of speech
Useful

- natural and familiar way of receiving information

Problems

- similar to recognition: prosody particularly

Additional problems

- intrusive - needs headphones, or creates noise in the workplace
- transient - harder to review and browse

Speech Synthesis: useful?

Successful in certain constrained applications when the user:

- is particularly motivated to overcome problems
- has few alternatives

Examples:

- screen readers
- read the textual display to the user utilised by visually impaired people
- warning signals
- spoken information sometimes presented to pilots whose visual and haptic skills are already fully occupied

