>

;& Implementation support % :
e 'MP PP ®: Introduction
% Chapter 8
)'A)'A
¥ * programming tools ¥ How does HCI affect of the programmer?
) — levels of services for programmers)
¥ < windowing systems % Advances in coding have elevated programming
¥ — core support for separate and simultaneous user- ¥ hardware specific
system activity — interaction-technique specific
¥ = programming the application and control of *
* f}llalogug) » Layers of development tools
= interaction toolkits — windowing systems (operating systems)
* — bring programming closer to level of user perception * — interaction toolkKits
« * user interface management systems * — user interface management systems
— controls relationship between presentation and
* functionality *
1
<‘A4> T - 4“4> T -
< Elements of windowing systems < roles of a windowing system
<:’:> 4:.':>
¥ Device independence 6
"3 programming the abstract terminal device "
drivers
* image models for output and (partially) input *
* Resource sharing * masemay =)
* achieving simultaneity of user tasks * e JI
* window system supports independent *

processes
isolation of individual applications

2. Architectures of windowin : :
o g ¥ The client-server architecture
% Systems

)'A)'A

.3 4*» — | Need not be
y¢ three possible software architectures ¥ e |] [| 00 fortmel on same

' — all assume device driver is separate Y I f mechine

— differ in how multiple application management is L ynar

* implemented * - | P |

* 1. each application manages all processes * ! L l

* — everyone worries about synchronization * o

— reduces portability of applications

* 2 management role within kernel of operating system * P |

* — applications tied to operating system * =

* 3. management role as separate application * l .

maximum portability o o
5
A H H H A H H H

- Programmmg the application - Pro_g_rammlng the application

& read-evaluation loop (macs) 2 notification-based

)'A)'A

N A AP dRaE : RidA M
> 4

v
A void main(String[] args) { | |
‘!’ Menu menu = new Menu(Q); = F
menu.setOption(“Save™); P |

menu.setOption(“Quit™);

menu.setAction(“Save”,mySave) T ;
menu.setAction(“Quit”,myQuit) | ==

repeat 3
read-event(myevent) i
case myevent.type int mySave(Event e) { — —
type_1: // save the current file ey |-4| P
do type_1 processing } o

type_2:

do type_2 processing int myQuit(Event e) { —m |
* // close down

* type_n:

3
do type_n processing
* end case *

end repeat 7

>

vy . . . 2a . .
< going with the grain < Using toolkits
¥ < system style affects the interfaces ¥ Interaction objects
— modal dialogue box — input and output g
‘*’ = easy with event-loop (just have extra read-event loop) ‘*’ intrinsically linked g ?'1." 'II-"' Eﬂ-’ i
< hard with notification (need lots of mode flags) =, j E& m E m |§; : ﬂ {
* — non-modal dialogue box * o o
* « hard with event-loop (very complicated main loop) * A
= easy with notification (just add extra handler) Toolkits provide this level of abstraction
* * — programming with interaction objects (or
* beware! * — techniques, widgets, gadgets)
; , . : : T — promote consistency and generalizability
N if you don’t expllc_:ltly design it W|II_Just ha_ppen . _ through similar look and feel
implementation should not drive design _ amenable to object-oriented programming
9 10
& : ;. Ul development environment
< interfaces in Java . (UIDE)
<:’:> 1:.':>
¥ = Java toolkit — AWT (abstract windowing toolkit) ¥ < e.g. Visual Studio, Delphi
¥ Java classes for buttons, menus, etc. * — Provide high level of support for
programmer
* . Notification based; * . but
3 — AWT 1.0 — need to subclass basic widgets ¥ — Usually operating system specific
— AWT 1.1 and beyond -— callback objects
* *
% = Swing toolkit *
#*

— built on top of AWT — higher level features
— uses MVC architecture (see later)

11

12

>

2. User Interface Management 2% :
)
< UIMS as conceptual architecture
% Systems (UIMS)
MNA v
< UIMS add another level above toolkits ¥ < separation between application semantics and
" — toolkits too difficult for non-programmers ¥ presentation
e improves:
* *
« roles of UIMS — portability — runs on different systems
* — conceptual architecture * — reusability — components reused cutting costs
* — implementation techniques * — multiple interfaces — accessing same functionality
. — support infrastructure N - custo-mlzablllty-— by deS|gne|j and user
e These issues will be more important as
* * ‘anytime anywhere’ computing becomes a
. . reality
13 14
<‘A4> 3 <‘A4> MVC
. Seeheim model P .
v Mmodel - view - controller
<A> <A>
v v
e lexical syntactic semantic i‘:,
! <=~ Presentation <= Dialogue [Fuancuiz:f(lir:y ['
i, P tat Control (ilftzlrface) APPLICATION i, /v
v H v I . -
* switch ‘*’ 4_ =
¥* *
— arose out of implementation experience WG is laraely pibeli del
.. is largely pipeline model:
* — but principal contribution is conceptual * input — control — model — view — output
_ ‘ ’ = but in graphical interface
* concepts part of ‘normal’ Ul Ianguage * — inpgt o’?ﬂy has meaning in relation to output
e.g. mouse click
* i * — need to know what was clicked
e.g. the lower box, the switch — controller has to decide what to do with click
* * — but view knows what is shown where!
= in practice controller ‘talks’ to view

* needed for implementation
= but not conceptual

15

— separation not complete

16

>

vy PAC vy
< > « >
@ _ _ < PAC model
. Presentation - abstraction - control
)'A)'A
¥ ¥ < PAC model closer to Seeheim
)) — abstraction — logical state of component
‘ﬂ' ‘*’ — presentation — manages input and output
— control — mediates between them
* *
* abstractioN x ° manages hierarchy and multiple views
— control part of PAC objects communicate
* *
* % = PAC cleaner in many ways ...
but MVC used more in practice
* * (e.g. Java Swing)
* *
18
< Implementation of UIMS < graphical specification
vAs vy
4"‘> 4'.">
A A
3 ;,:.
¥ < Techniques for dialogue controller ¥ < Whatitis
= menu networks - state transition diagrams — draw components on screen
‘*’ - grammar notations - event languages ﬂ* — set actions with script or links to program
* e declarative languages e constraints *)
- graphical specification * Inuse
* * — with raw programming most popular technique
— for most of these see chapter 16 — e.g. Visual Basic, Dreamweaver, Flash
* . *
. = N.B. constraints . ° local vs. global
— instead of what happens say what should be true — hard to ‘see’ the paths through system

— used in groupware as well as single user interfaces
(ALV - abstraction—link—view)

see chapter 16 for more details on several oflfhese

— focus on what can be seen on one screen

20

<

-
<

vAs
vAs
Q‘F
)
3
3
3
A

E 3

*

*

Trend
The drift of dialogue control

» internal control
(e.g., read-evaluation loop)

= external control
(independent of application semantics or presentation)

hd presentation control
(e.g., graphical specification)

21

vAs
4’,:
N
)
v
A
> 3
A
.3

.3

v
4

A
v

)’
»

¥*
3
3
*

sSummary

Levels of programming support tools
e Windowing systems
— device independence
— multiple tasks
» Paradigms for programming the application
— read-evaluation loop
— notification-based

» Toolkits
— programming interaction objects

* UIMS
— conceptual architectures for separation
— techniques for expressing dialogue

22

