
1

Implementation support
chapter 8

• programming tools
– levels of services for programmers

• windowing systems
– core support for separate and simultaneous user-

system activity

• programming the application and control of
dialogue

• interaction toolkits
– bring programming closer to level of user perception

• user interface management systems
– controls relationship between presentation and

functionality
2

Introduction

How does HCI affect of the programmer?

Advances in coding have elevated programming
hardware specific

→ interaction-technique specific

Layers of development tools
– windowing systems (operating systems)
– interaction toolkits
– user interface management systems

3

Elements of windowing systems

Device independence
programming the abstract terminal device

drivers
image models for output and (partially) input

Resource sharing
achieving simultaneity of user tasks
window system supports independent

processes
isolation of individual applications

4

roles of a windowing system

5

Architectures of windowing
systems

three possible software architectures
– all assume device driver is separate
– differ in how multiple application management is

implemented

1. each application manages all processes
– everyone worries about synchronization
– reduces portability of applications

2. management role within kernel of operating system
– applications tied to operating system

3. management role as separate application
maximum portability

6

The client-server architecture

Need not be
on same
machine

7

Programming the application
read-evaluation loop (macs)

repeat
read-event(myevent)
case myevent.type

type_1:
do type_1 processing

type_2:
do type_2 processing

...
type_n:

do type_n processing
end case

end repeat 8

Programming the application
notification-based

void main(String[] args) {
Menu menu = new Menu();
menu.setOption(“Save”);
menu.setOption(“Quit”);
menu.setAction(“Save”,mySave)
menu.setAction(“Quit”,myQuit)

...
}

int mySave(Event e) {
// save the current file

}

int myQuit(Event e) {
// close down

}

9

going with the grain

• system style affects the interfaces
– modal dialogue box

• easy with event-loop (just have extra read-event loop)
• hard with notification (need lots of mode flags)

– non-modal dialogue box
• hard with event-loop (very complicated main loop)
• easy with notification (just add extra handler)

beware!
if you don’t explicitly design it will just happen

implementation should not drive design

10

Using toolkits

Interaction objects
– input and output

intrinsically linked

Toolkits provide this level of abstraction
– programming with interaction objects (or
– techniques, widgets, gadgets)
– promote consistency and generalizability
– through similar look and feel
– amenable to object-oriented programming

move press release move

11

interfaces in Java

• Java toolkit – AWT (abstract windowing toolkit)

• Java classes for buttons, menus, etc.

• Notification based;
– AWT 1.0 – need to subclass basic widgets
– AWT 1.1 and beyond -– callback objects

• Swing toolkit
– built on top of AWT – higher level features
– uses MVC architecture (see later)

12

UI development environment
(UIDE)

• e.g. Visual Studio, Delphi
– Provide high level of support for

programmer

• but
– Usually operating system specific

13

User Interface Management
Systems (UIMS)

• UIMS add another level above toolkits
– toolkits too difficult for non-programmers

• roles of UIMS
– conceptual architecture
– implementation techniques
– support infrastructure

14

UIMS as conceptual architecture

• separation between application semantics and
presentation

• improves:
– portability – runs on different systems
– reusability – components reused cutting costs
– multiple interfaces – accessing same functionality
– customizability – by designer and user

• These issues will be more important as
‘anytime anywhere’ computing becomes a
reality

15

Seeheim model

– arose out of implementation experience
– but principal contribution is conceptual
– concepts part of ‘normal’ UI language

e.g. the lower box, the switch
• needed for implementation
• but not conceptual

Presentation Dialogue
Control

Functionality
(application
interface)

USERUSER APPLICATION

switch

lexical syntactic semantic

16

MVC
model - view - controller

• MVC is largely pipeline model:
 input → control → model → view → output

• but in graphical interface
– input only has meaning in relation to output

 e.g. mouse click
– need to know what was clicked
– controller has to decide what to do with click
– but view knows what is shown where!

• in practice controller ‘talks’ to view
– separation not complete

model

view

controller

17

PAC
presentation - abstraction - control

abstraction presentation

control

A P
C

A P
C

A P
C A P

C 18

PAC model

• PAC model closer to Seeheim
– abstraction – logical state of component
– presentation – manages input and output
– control – mediates between them

• manages hierarchy and multiple views
– control part of PAC objects communicate

• PAC cleaner in many ways …
but MVC used more in practice
 (e.g. Java Swing)

19

Implementation of UIMS

• Techniques for dialogue controller
• menu networks • state transition diagrams
• grammar notations • event languages
• declarative languages • constraints
• graphical specification

– for most of these see chapter 16

• N.B. constraints
– instead of what happens say what should be true
– used in groupware as well as single user interfaces

 (ALV - abstraction–link–view)

see chapter 16 for more details on several of these 20

graphical specification

• what it is
– draw components on screen
– set actions with script or links to program

• in use
– with raw programming most popular technique
– e.g. Visual Basic, Dreamweaver, Flash

• local vs. global
– hard to ‘see’ the paths through system
– focus on what can be seen on one screen

21

Trend
The drift of dialogue control

• internal control
(e.g., read-evaluation loop)

• external control
(independent of application semantics or presentation)

• presentation control
(e.g., graphical specification)

22

Summary

Levels of programming support tools
• Windowing systems

– device independence
– multiple tasks

• Paradigms for programming the application
– read-evaluation loop
– notification-based

• Toolkits
– programming interaction objects

• UIMS
– conceptual architectures for separation
– techniques for expressing dialogue

