
COMPSCI 340 S2 C 2015
SOFTENG 370 S2 C 2015

Operating Systems
Assignment 1 – A Stack Dispatcher

7% of course mark
Due Monday 17th of August 9:30 pm

Introduction
There are many types of dispatcher. That is the component of the process scheduler which selects from
amongst the runnable processes which process should be allocated to which processor. This assignment deals
with a stack based (LIFO) dispatcher. It came from an idea for a simple operating system for a single user on
a very old, very slow computer. The requirement was for the scheduling of processes to be as simple as
possible, without even the benefit of timeslices. On the assumption that the most recently started processes
were the ones the user wanted to give priority to, the list of ready to run processes was maintained as a stack.

Details
All processes which are ready to run (i.e. they are not waiting for any resource except the processor) are
maintained in a stack. The process on the top of the stack is the process currently running. When the
currently running process needs to wait for a resource or it finishes running it leaves the stack. This means
the new process at the top of the stack becomes the running process.
When a new process is created it gets pushed on to the top of the stack, becoming the new currently running
process. This means that the process that was previously running must be paused. It remains on the stack,
and the new process starts running.
Under this scheme it is easy for a process never to finish. As long as there is a stream of newly arriving
processes the processes on the bottom of the stack may never run. Of course if this happens it means that
there is too much work for the system to handle and many other types of dispatcher exhibit this behaviour as
well. In this case, as there is only going to be one person using the system at any time the user can be given
direct control over the scheduling of processes. So if the user really wants a particular process in the stack to
be the currently running one he or she can select the process and it gets moved to the top of the stack. In this
way the dispatcher is not truly a stack, it only works as a stack without the user’s intervention.
The scheduling is actually pre-emptive, but not by clock interrupts. The only things that can stop a happily
running process from continuing are actions by the user.
All interactions with the program are carried out via a simple menu system. Each menu option consists of a
single letter e.g. “n” starts the “(n)ew” operation. This is designed so that the program can be tested by
redirecting commands from a file. In the rest of this document such commands are simply written as (n)ew.

User actions causing dispatching
The user can start a new process running. The way this is done is by selecting (n)ew and then either
(i)nteractive or (b)ackground. These two process types, background and interactive are explained later. The
new process is created and immediately pushed on the top of the stack, displacing any process that is
currently at the top of the stack and hence running.
The user can pause a running process and continue with another process by selecting (t)op and typing the
process identifier for a process on the stack. This causes the currently running process to be paused and the
selected process to move from its position to the top of the stack. All elements further up the stack move
towards the bottom of the stack to fill in the gap made by the newly running process.
Another user action that causes a new process to be dispatched is typing the return/enter key after typing in
data to a process waiting for input. The process to receive input is selected using the (f)ocus command. The
process that was waiting for input moves to the top of the stack and becomes the currently running process.
And lastly if the user selects (k)ill and chooses the currently running process, it is killed and removed and the
next process on the stack resumes running.

page �1

COMPSCI 340 & SOFTENG 370 Assignment 1

Process types
In a real operating system there may well be many different types of processes. In this system there are just
two types depending on whether a process requires input from the user or not.
Both types of process in this assignment simulate doing some work by printing a “*” to the screen and by
going to sleep (see the main_process_body method of the Process class). All processes in this assignment
are implemented using Python threads (or pthreads if you really want to do the assignment in C).

Background process
A background process cycles through the main_process_body method a random number of times
(between 10 and 160 inclusive). It requires no input from the user and will always stay in the ready to run
stack until it is finished (or killed).

Interactive process
An interactive process is very similar to a background process but instead of executing for a random number
of times it repeatedly asks the user to type in the number of times it should call the main_process_body
method before waiting for more input.

The input cycle
The interactive processes call the IO_Sys read method to get input from the user. This call must stop the
process from running and remove it from the stack moving it to the first empty position in the list of waiting
processes. The process does not automatically get the focus of the keyboard input. In order to choose the
interactive process for keyboard input there is the (f)ocus command. This command asks the user to type in
the process identifier of the process.
The process currently receiving keyboard focus is shown by having the input cursor visible in its window
panel.
When a process has the keyboard focus each character typed is sent to a buffer for the process (and also
appears in the display area of the process). When the user types a newline (enter or return) the process gets
put back on the top of the runnable stack (both visually and logically). The process then checks the value
returned from the read. If the value is -1 the process finishes. If the value is greater than -1 the process runs
for that many calls to the main_process_body before asking the user for more input. Throughout the
assignment you may assume that only valid data will be input.

The menus
There are two menus and extra prompts which may appear at the top of the screen. The menu options are
described here.

The main menu
(n)ew, (f)ocus, (t)op, (k)ill, (h)alt, (p)ause, (w)ait, (q)uit:

(n)ew
Create a new process. This command changes the menu to the create menu described below.

(f)ocus
Allocate the keyboard focus to a particular panel (and corresponding process). This command causes the
prompt “Enter the number of the input process:” to appear at the top of the screen and the
program input then waits for the user to enter the process identifier of a waiting interactive process, followed
by the return/enter key. The cursor then jumps to the panel of that process and stays there until the user has
typed a number followed by the return/enter key. After this the main menu is once again displayed at the top
of the screen.

(t)op
Move a runnable process (already in the stack) to the top of the stack. This usually causes other processes to
move towards the bottom of the stack to occupy the place where the selected process was. It obviously also
causes the selected process to resume running as it is now at the top of the stack. This command causes the
prompt “Enter the number of the process to move:” to appear at the top of the screen and the
program input then waits for the user to enter the process identifier of a runnable process. The process is

page �2

COMPSCI 340 & SOFTENG 370 Assignment 1

moved when the user presses the return/enter key. After this the main menu is once again displayed at the top
of the screen.

(k)ill
Kill a process. As with (t)op and (f)ocus this command causes a prompt and waits for the user to enter the
number of the process. The prompt is "Enter the number of the process to kill:”. After the
number is entered the process is killed and removed from the system. If the process was runnable this may
require the stack to be rearranged. If the process was waiting it is just removed from the waiting set. After
this the main menu is once again displayed at the top of the screen.

(h)alt
Halts the entire system for 5 seconds. This pauses both the currently running process and also stops the
program from receiving input commands for 5 seconds. The reason for this command is to freeze the system
when receiving commands from redirected files, thus enabling you and the markers to examine output.

(p)ause
Pause from receiving further commands for 5 seconds. Unlike (h)alt this allows runnable processes to keep
running but it pauses input from redirected files so the processing can be observed.

(w)ait
Allow all currently runnable processes to run to completion (or until they ask for further input) and then stop
the system. After this command the program stops when there are no more processes in the runnable queue.

(q)uit
Shut the system down. The program stops regardless of the current states of the processes.

The create menu
When the user selects (n)ew in the main menu this menu is displayed.
(i)nteractive, (b)ackground, (c)ancel

(i)nteractive
The process being created is interactive. After creating the process on the top of the runnable stack the main
menu is displayed. Interactive processes don’t stay on the top of the stack for long because they wait almost
immediately.

(b)ackground
The process being created is a background process. After creating the process on the top of the runnable
stack the main menu is displayed.

(c)ancel
Don’t create a new process. Return to the main menu.  

page �3

COMPSCI 340 & SOFTENG 370 Assignment 1

The screen
When the program is run it shows two columns of panels (see figure 1). The left side panels show the stack
of runnable processes (these processes are not waiting for input, they only need the processor). The right side
panels display all interactive processes currently waiting for input from the user.
The currently running process is process 7 since it is at the top of the runnable stack. If you were watching
this run it would be obvious as it is the only process adding more stars to the screen. This demonstrates that
the stack grows downwards in this assignment so the top of the stack is actually at the bottom.
There are four background processes in the figure, processes 1, 2, 6 and 7, and two interactive processes,
processes 3 and 5. Process numbers are allocated sequentially so Process 4 must have already finished.
Process 3 is an interactive process which is in the runnable stack because it is not waiting for input. You can
see the user has typed in 100 and the process is working on that. Process 5 however is waiting for user input
and is in the set of waiting processes. When an interactive process is made to wait it is allocated the first
screen panel in the right hand column which is currently not being used. So we can see that when process 5
was moved to the waiting set there must have been another interactive process (probably 3) already waiting.

page �4

figure 1

COMPSCI 340 & SOFTENG 370 Assignment 1

What you have to do
Write a program which works as described in this document. You can do this in any language you like which
runs on Linux in the labs but since I provide you with a number of Python modules which already provide
some of the functions including all of the user interface it will be much easier if you do it in Python.
Feel free to modify any of the distributed code.

SOFTENG 370 students
SoftEng370 students have an extra component. You must dispatch two processes at a time, simulating a dual
core machine. Everything should work the same as described above but with the top two processes in the
runnable stack both running.

Useful info
To run the program you type: python3 a1.py

Alternatively if you make a1.py executable then you can run it with: ./a1.py

It is likely that your program will occasionally crash leaving the terminal window in an inconsistent state.
When this happens type reset. This will fix your terminal window.

When logging into Linux in the lab I recommend choosing “Ubuntu” at the login window, you may need to
click on the GNOME footprint icon to the right of the login panel.
It looks as though you may be limited to Xterm or UXterm as terminal programs and gedit as an editor (or
vi for the particularly brave). Of course on your own version of Linux you can use any terminal programs
and editors that you like.
Apart from the places in the released code you are NOT allowed to use the Python time.sleep function.

Questions
Answer the following questions. Put the answers in a simple text file called a1Answers.txt.

1. Look at the list of processes, arrival times and burst times on page 270 of the text. Draw a Gantt chart
(ASCII art is suitable) showing the order of execution for these processes if they were scheduled by a
LIFO stack-based dispatcher. What would the average waiting time be in this case?

2. The code commented out in Process.main_process_body method checks the process’ state. A real
implementation wouldn’t require this. Explain why a real system doesn’t require this and why a Python
thread implementation does. Alternatively explain how you could get rid of this even when using Python
threads.

3. (For SOFTENG370 students only). Does the solution of maintaining one stack shared by multiple
processors scale well? Explain.  

Submitting the assignment
Make sure your name and upi is included in every file you submit.
Use the assignment drop box to submit. adb.auckland.ac.nz
Any work you submit must be your work and your work alone – see the information on academic integrity
http://www.auckland.ac.nz/uoa/home/about/teaching-learning/honesty.

Marking guide
The markers will redirect data from text files as the standard input. Your program must work with input both
from the keyboard and from redirected input. You will not receive any marks for a section which does not
produce output (even if it works perfectly behind the scenes).

page �5

http://adb.auckland.ac.nz
http://www.auckland.ac.nz/uoa/home/about/teaching-learning/honesty

COMPSCI 340 & SOFTENG 370 Assignment 1

If you did not do the assignment using Python you must make it as easy as possible for the markers to
execute your program.
The first thing in your a1Answers.txt file must be instructions to your marker on how to prepare and run
your assignment.
If you use an interpreted or scripting language tell the marker how to run it, e.g. “sh a1”. If you used Java
you can tell the marker to type “javac *.java” followed by “java A1” or whatever. If you used another
compiled language you must submit a “make” file which the marker can run by typing “make”. The program
should then be runnable by typing “./a1”.

Marks:
Your name and UPI is in every file you submit.

[1 mark]

No extra sleeps in the code. The marker will type “grep sleep *.py” (or whatever file extensions match
the source code of your solution). Please don’t try to imitate a sleep by using unnecessary loops. All control
of processes should be done with thread lock, event or similar objects.

[1 mark]

For the following tests the marker will redirect input into your program from a file, e.g. “python3 a1.py
< test1”. If your program cannot receive input from files then you will not get any marks for these
sections. If any errors are reported by your program the markers will take off ½ of a mark in any test which
causes errors (but only if you get at least 1 mark for the test). The test files the markers use will be
substantially the same as those on the assignment web page.
Due to the speed of commands coming from a file you may find junk characters left in some of the process
windows which you don’t see when entering commands from the keyboard. As long as all of the output from
your processes appears in the correct panels and is clear you don’t need to worry about this.

test1 - Create a background process and observe it running before quitting (the process does not have to
complete).

[1 mark]

test2 - Create an interactive process, send focus to it and get it running. The process should move between
the runnable stack and waiting set as described. Then terminate the process by entering “-1”.

Note to markers - check that the process disappears from the screen after receiving the “-1”.
[3 marks]

test3 - Create a number of background processes and wait for them to finish.

Note to markers - when a process finishes all traces of it should be removed.
[2 marks]

test4 - Create a number of interactive processes and send the focus to different ones. When a process is
dispatched it leaves a gap in the set of waiting processes. New waiting processes are allocated to the first
available spaces.

[2 marks]

test5 - Tests the kill command both of runnable and waiting processes. It also uses the halt command.
[2 marks]

test6 - Tests the top command.
[2 marks]

Question 1 [2 marks]

Question 2 [4 marks]

Question 3 (SE370 only) [3 marks]

page �6

