
Chapter 6 Error Recovery in CUP Page 1 of 13

Chapter 6 Error Recovery in CUP
Any parser must be able to cope with syntactically invalid input. It is normally unsatisfactory
for the parser to just terminate on detecting an error. Errors must be recovered from in some
way, producing an error message, and continuing the process of parsing until the end of input
is reached.
CUP has an intrinsic “error” symbol (neither exactly a terminal nor a nonterminal). When an
error is detected, a portion of the top of stack, and a portion of the following input are deleted,
and replaced by the “error” symbol. Thus the “error” symbol effectively matches arbitrary
input surrounding the position at which the error was detected. The portion of stack deleted
of course corresponds to input already parsed.
The error symbol can be used on the right hand side of grammar rules, as in
Stmt::= error NEWLINE ;

When the parser cannot perform a shift, reduction, or accept, then the parser enters error
mode, the parser generates an error message, cuts the parser stack back until it has a state that
can shift the symbol “error”, and shifts error onto the stack. (If there is no state that can shift
error, then the parser aborts.).
It then deletes tokens until it can successfully parse error_sync_size() tokens without
generating another error. The default version of the method error_sync_size() returns the
value 3, so that normally the parser has to be able to consume 3 tokens before the error is
considered to be “recovered from”. To alter the number of tokens that need to be parsed to
recover from an error, you can override the error_sync_size() method.
Once the parser is placed into a configuration that has an immediate error recovery (by
popping the stack to the first such state), the parser begins deleting tokens to find a point at
which the parse can be continued. After discarding each token, the parser attempts to parse
ahead in the input (without executing any embedded semantic actions). If the parser can
successfully parse past the required number of tokens, then the input is backed up to the point
of recovery and the parse is resumed normally (executing all actions). If the parse cannot be
continued far enough, then another token is discarded and the parser again tries to parse
ahead. If the end of input is reached without making a successful recovery (or there was no
suitable error recovery state found on the parse stack to begin with) then error recovery fails.
The sort of error recovery available in CUP, allows for little more than what is called the
"panic mode" of error recovery, where input is consumed until the parser reaches a significant
token, such as the end of line, a token that can terminate or follow a statement, or a token that
can start a new statement.
In many cases, there are tokens that are known to be clear markers for the end of a statement.
For example
Stmt::= error NEWLINE;

will consume input until we have a newline (assuming newlines are syntactically important).
Stmt::= error SEMICOLON;

Stmt::= error RIGHTCURLY;

will consume input until we have a “;” or “}”, both of which are clear markers for the ends of
statements in Java and C.

Chapter 6 Error Recovery in CUP Page 2 of 13

Sometimes the marker is not part of the statement itself, but is a token used to separate
statements. For example
Stmt::= error;

will consume input until we have a token that can follow a statement. This is useful in Pascal,
where the “;” separates statements, rather than terminating them.
In some languages all statements have clear markers to start the statement. For example
Stmt::= error Stmt;

will consume text until it finds a token that can start a new statement.
Example
A bottom up parse of the invalid input
 - a * b + c * - d \n
with the grammar used as an example of bottom up parsing in chapter 2 successfully parses
until it generates

$0 SL1 E5 +23 T25 *17 - Error (Cannot parse due to invalid input).

At this stage it cuts the stack back to
$0 SL1 -

then pushes “error” onto the stack
$0 SL1 error 12 -

then deletes input until it gets a token it can shift onto the stack, namely \n.
$0 SL1 error 12 \n

It shifts the \n onto the stack
$0 SL1 error 12 \n 13 $

Then reduces by the rule Program → Program error \n.
$0 SL1 $

It has now “recovered” from the error.
Example
It is very important that the error symbol be used very sparingly in your grammar. The
manner in which the parser cuts back the stack to the first place at which error can be shifted,
fixes the parser into trying to correct the error for a specific construct, and this may not be
appropriate. Only use error recovery for major constructs such as statements, and only scan
ahead for very well defined markers for the end of the statement.
Consider the grammar
terminal LEFTBRACE, RIGHTBRACE, ASSIGN, SEMICOLON, COMMA;
terminal String IDENT;

nonterminal ProgramNode Program;
nonterminal DeclListNode DeclList;
nonterminal DeclNode Decl;
nonterminal TypeNode Type;
nonterminal DeclrListNode DeclrList;
nonterminal DeclrNode Declr;
nonterminal ExprNode Expr;
nonterminal ExprListNode ExprList;

start with Program;

Chapter 6 Error Recovery in CUP Page 3 of 13

Program::=
 DeclList:declList
 {:
 RESULT = new ProgramNode(declList);
 :}
 ;

DeclList::=
 {:
 RESULT = new DeclListNode();
 :}
 |
 DeclList:declList Decl:decl
 {:
 declList.addElement(decl);
 RESULT = declList;
 :}
 ;

Decl::=
 Type:type DeclrList:declrList SEMICOLON
 {:
 RESULT = new VariableDeclNode(type, declrList);
 :}
 |
 error SEMICOLON
 {:
 RESULT = new ErrorDeclNode("DeclError...;");
 :}
 ;

Type::=
 IDENT:ident
 {:
 RESULT = new TypeIdentNode(ident);
 :}
 ;

DeclrList::=
 Declr:declr
 {:
 RESULT = new DeclrListNode(declr);
 :}
 |
 DeclrList:declrList COMMA Declr:declr
 {:
 declrList.addElement(declr);
 RESULT = declrList;
 :}
 ;

Declr::=
 IDENT:ident ASSIGN Expr:expr
 {:
 RESULT = new InitDeclrNode(ident, expr);
 :}
 |
 IDENT:ident
 {:
 RESULT = new UninitDeclrNode(ident);

Chapter 6 Error Recovery in CUP Page 4 of 13

 :}
 |
 error
 {:
 RESULT = new ErrorDeclrNode("DeclrError...");
 :}
 ;

Expr::=
 LEFTBRACE ExprList:exprList RIGHTBRACE
 {:
 RESULT = new CompoundExprNode(exprList);
 :}
 |
 LEFTBRACE error RIGHTBRACE
 {:
 RESULT = new ErrorExprNode("{ ExprListError ... }");
 :}
 |
 IDENT:ident
 {:
 RESULT = new VariableExprNode(ident);
 :}
 ;

ExprList::=
 Expr:expr
 {:
 RESULT = new ExprListNode(expr, null);
 :}
 |
 Expr:expr COMMA ExprList:exprList
 {:
 RESULT = new ExprListNode(expr, exprList);
 :}
 ;

In fact this grammar has too many grammar rules involving “error”.
The rule
Expr::=
 LEFTBRACE error RIGHTBRACE
 {:
 RESULT = new ErrorExprNode("{ ExprListError ... }");
 :}

means that if the parser finds a “{” in an expression, then detects a syntax error, the parser
will scan ahead trying to match a “}”. Perhaps the syntax error was caused by missing out the
“}”. Worse still, perhaps there is no “}” in the following input. The parser will eat up the
remaining input, then generate an error it cannot recover from.
The rule
Declr::=
 error
 {:
 RESULT = new ErrorDeclrNode("DeclrError...");
 :}
 ;

Chapter 6 Error Recovery in CUP Page 5 of 13

has similar failings, but is not quite as harmful. A missing “;” will mean that the parser scans
ahead for a “,” or “;” (since that is what can follow a “Declr”). It might eat up the start of the
next construct, and process the remainder of that construct as part of the current construct.
What happens for input such as
int a b = { c, d, e }, f, g
int h, i;
int j = { k;
int l = { m, n }, o;

It produces error messages
Programs/invalid/program.in (1): Syntax Error
int a b = { c, d, e }, f, g
 ^
Programs/invalid/program.in (1): Syntax Error
int a b = { c, d, e }, f, g|int h, i;|int
 ^ | |
Programs/invalid/program.in (2): Syntax Error
int a b = { c, d, e }, f, g|int h, i;|int j = { k;|
 |^^^ | |
Programs/invalid/program.in (3): Syntax Error
int a b = { c, d, e }, f, g|int h, i;|int j = { k;|int l = { m, n }, o
 | | ^|

It ends up parsing the input as
int DeclrError..., d, DeclrError..., f, DeclrError..., i;
int j = { ExprListError ... }, o;

We get the following parse. I have made error_sync_size() return 1, to avoid double parsing
of input.

$ 0 ID int Reduce DeclL ::=
$ 0 DeclL 2 Shift ID 5
$ 0 DeclL 2 ID 5 ID a Reduce Type ::= ID
$ 0 DeclL 2 Type 3 Shift ID 9
$ 0 DeclL 2 Type 3 ID 9 ID b Error Pop Stack
$ 0 DeclL 2 Type 3 Shift error 8
$ 0 DeclL 2 Type 3 error 8 Error Consume ID b
$ 0 DeclL 2 Type 3 error 8 = Error Consume =
$ 0 DeclL 2 Type 3 error 8 { Error Consume {
$ 0 DeclL 2 Type 3 error 8 ID c Error Consume ID c
$ 0 DeclL 2 Type 3 error 8 , Reduce Dclr ::= error
$ 0 DeclL 2 Type 3 Dclr 10 Reduce DclrL ::= Dclr
$ 0 DeclL 2 Type 3 DclrL 11 Shift , 12
$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID d Shift ID 9
$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID 9 , Reduce Dclr ::= ID
$ 0 DeclL 2 Type 3 DclrL 11 , 12 Dclr 14 Reduce DclrL ::= DclrL , Dclr
$ 0 DeclL 2 Type 3 DclrL 11 Shift , 12
$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID e Shift ID 9
$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID 9 } Error Pop Stack
$ 0 DeclL 2 Type 3 DclrL 11 , 12 Shift error 8
$ 0 DeclL 2 Type 3 DclrL 11 , 12 error 8 Error Consume }
$ 0 DeclL 2 Type 3 DclrL 11 , 12 error 8 , Reduce Dclr ::= error
$ 0 DeclL 2 Type 3 DclrL 11 , 12 Dclr 14 Reduce DclrL ::= DclrL , Dclr
$ 0 DeclL 2 Type 3 DclrL 11 Shift , 12
$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID f Shift ID 9
$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID 9 , Reduce Dclr ::= ID
$ 0 DeclL 2 Type 3 DclrL 11 , 12 Dclr 14 Reduce DclrL ::= DclrL , Dclr
$ 0 DeclL 2 Type 3 DclrL 11 Shift , 12

Chapter 6 Error Recovery in CUP Page 6 of 13

$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID g Shift ID 9
$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID 9 ID int Error Pop Stack
$ 0 DeclL 2 Type 3 DclrL 11 , 12 Shift error 8
$ 0 DeclL 2 Type 3 DclrL 11 , 12 error 8 Error Consume ID int
$ 0 DeclL 2 Type 3 DclrL 11 , 12 error 8 ID h Error Consume ID h
$ 0 DeclL 2 Type 3 DclrL 11 , 12 error 8 , Reduce Dclr ::= error
$ 0 DeclL 2 Type 3 DclrL 11 , 12 Dclr 14 Reduce DclrL ::= DclrL , Dclr
$ 0 DeclL 2 Type 3 DclrL 11 Shift , 12
$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID i Shift ID 9
$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID 9 ; Reduce Dclr ::= ID
$ 0 DeclL 2 Type 3 DclrL 11 , 12 Dclr 14 Reduce DclrL ::= DclrL , Dclr
$ 0 DeclL 2 Type 3 DclrL 11 Shift ; 13
$ 0 DeclL 2 Type 3 DclrL 11 ; 13 ID int Reduce Decl ::= Type DclrL ;
$ 0 DeclL 2 Decl 6 Reduce DeclL ::= DeclL Decl
$ 0 DeclL 2 Shift ID 5
$ 0 DeclL 2 ID 5 ID j Reduce Type ::= ID
$ 0 DeclL 2 Type 3 Shift ID 9
$ 0 DeclL 2 Type 3 ID 9 = Shift = 15
$ 0 DeclL 2 Type 3 ID 9 = 15 { Shift { 16
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 ID k Shift ID 18
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 ID 18 ; Reduce Exp ::= ID*
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 Exp 21 Error Pop Stack
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 Shift error 20
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 error 20 Error Consume ;
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 error 20 ID int Error Consume ID int
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 error 20 ID l Error Consume ID l
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 error 20 = Error Consume =
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 error 20 { Error Consume {
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 error 20 ID m Error Consume ID m
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 error 20 , Error Consume ,
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 error 20 ID n Error Consume ID n
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 error 20 } Shift } 24
$ 0 DeclL 2 Type 3 ID 9 = 15 { 16 error 20 } 24 , Reduce Exp ::= { error }
$ 0 DeclL 2 Type 3 ID 9 = 15 Exp 17 Reduce Dclr ::= ID = Exp
$ 0 DeclL 2 Type 3 Dclr 10 Reduce DclrL ::= Dclr
$ 0 DeclL 2 Type 3 DclrL 11 Shift , 12
$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID o Shift ID 9
$ 0 DeclL 2 Type 3 DclrL 11 , 12 ID 9 ; Reduce Dclr ::= ID
$ 0 DeclL 2 Type 3 DclrL 11 , 12 Dclr 14 Reduce DclrL ::= DclrL , Dclr
$ 0 DeclL 2 Type 3 DclrL 11 Shift ; 13
$ 0 DeclL 2 Type 3 DclrL 11 ; 13 $ Reduce Decl ::= Type DclrL ;
$ 0 DeclL 2 DecL 6 Reduce DeclL ::= DeclL Decl
$ 0 DeclL 2 Reduce Prog ::= DeclL
$ 0 Prog 1 Shift $ 26
$ 0 Prog 1 $ 26 Reduce $Start ::= Prog $
$ 0 $Start-1 Accept

You can find out exactly what it does by running the parser in debug mode. The method
error_sync_size() has been set to return 1.
Initializing parser
Obtain token IDENT "int"
Current token is IDENT
Reduce by rule DeclList ::=
Shift nonterminal DeclList to push state #2
Shift token IDENT to push state #5
Obtain token IDENT "a"

Chapter 6 Error Recovery in CUP Page 7 of 13

Current token is IDENT
Reduce by rule Type ::= IDENT
Shift nonterminal Type to push state #3
Shift token IDENT to push state #9
Obtain token IDENT "b"
Current token is IDENT
Enter error recovery
============ Parse Stack Dump ============
 Terminal: EOF State: 0
Nonterminal: DeclList State: 2
Nonterminal: Type State: 3
 Terminal: IDENT State: 9
==
Enter Find recovery state on stack
Find recovery config: Pop stack by one, state was # 9
Exit Find recovery config: Recover state found (#3)
Shift error to push state #8
Error recovery: read lookahead
Obtain token ASSIGN "="
Error recovery: Trying to parse ahead
Error recovery: Consume token IDENT
Obtain token LEFTBRACE "{"
Error recovery: Trying to parse ahead
Error recovery: Consume token ASSIGN
Obtain token IDENT "c"
Error recovery: Trying to parse ahead
Error recovery: Consume token LEFTBRACE
Obtain token COMMA ","
Error recovery: Trying to parse ahead
Error recovery: Consume token IDENT
Obtain token IDENT "d"
Error recovery: Trying to parse ahead
Try parse ahead: Reduce by rule Declr ::= error
Try parse ahead: Shift nonterminal Declr to push state #10
Try parse ahead: Reduce by rule DeclrList ::= Declr
Try parse ahead: Shift nonterminal DeclrList to push state #11
Try parse ahead shifts token COMMA to push state #12
Error recovery: Parse-ahead ok, going back to normal parse
Parse lookahead: Reparsing saved input with actions
Parse lookahead: Current token is COMMA
Parse lookahead: Current state is #8
Reduce by rule Declr ::= error
Parse lookahead: Shift nonterminal Declr to push state #10
Reduce by rule DeclrList ::= Declr
Parse lookahead: Shift nonterminal DeclrList to push state #11
Shift token COMMA to push state #12
Parse lookahead: Completed reparse
Exit error recovery - success
============ Parse Stack Dump ============
 Terminal: EOF State: 0
Nonterminal: DeclList State: 2
Nonterminal: Type State: 3
Nonterminal: DeclrList State: 11
 Terminal: COMMA State: 12
==
Shift token IDENT to push state #9
Obtain token COMMA ","
Current token is COMMA
Reduce by rule Declr ::= IDENT
Shift nonterminal Declr to push state #14
Reduce by rule DeclrList ::= DeclrList COMMA Declr

Chapter 6 Error Recovery in CUP Page 8 of 13

Shift nonterminal DeclrList to push state #11
Shift token COMMA to push state #12
Obtain token IDENT "e"
Current token is IDENT
Shift token IDENT to push state #9
Obtain token RIGHTBRACE "}"
Current token is RIGHTBRACE
Enter error recovery
============ Parse Stack Dump ============
 Terminal: EOF State: 0
Nonterminal: DeclList State: 2
Nonterminal: Type State: 3
Nonterminal: DeclrList State: 11
 Terminal: COMMA State: 12
 Terminal: IDENT State: 9
==
Enter Find recovery state on stack
Find recovery config: Pop stack by one, state was # 9
Exit Find recovery config: Recover state found (#12)
Shift error to push state #8
Error recovery: read lookahead
Obtain token COMMA ","
Error recovery: Trying to parse ahead
Error recovery: Consume token RIGHTBRACE
Obtain token IDENT "f"
Error recovery: Trying to parse ahead
Try parse ahead: Reduce by rule Declr ::= error
Try parse ahead: Shift nonterminal Declr to push state #14
Try parse ahead: Reduce by rule DeclrList ::= DeclrList COMMA Declr
Try parse ahead: Shift nonterminal DeclrList to push state #11
Try parse ahead shifts token COMMA to push state #12
Error recovery: Parse-ahead ok, going back to normal parse
Parse lookahead: Reparsing saved input with actions
Parse lookahead: Current token is COMMA
Parse lookahead: Current state is #8
Reduce by rule Declr ::= error
Parse lookahead: Shift nonterminal Declr to push state #14
Reduce by rule DeclrList ::= DeclrList COMMA Declr
Parse lookahead: Shift nonterminal DeclrList to push state #11
Shift token COMMA to push state #12
Parse lookahead: Completed reparse
Exit error recovery - success
============ Parse Stack Dump ============
 Terminal: EOF State: 0
Nonterminal: DeclList State: 2
Nonterminal: Type State: 3
Nonterminal: DeclrList State: 11
 Terminal: COMMA State: 12
==
Shift token IDENT to push state #9
Obtain token COMMA ","
Current token is COMMA
Reduce by rule Declr ::= IDENT
Shift nonterminal Declr to push state #14
Reduce by rule DeclrList ::= DeclrList COMMA Declr
Shift nonterminal DeclrList to push state #11
Shift token COMMA to push state #12
Obtain token IDENT "g"
Current token is IDENT
Shift token IDENT to push state #9
Obtain token IDENT "int"

Chapter 6 Error Recovery in CUP Page 9 of 13

Current token is IDENT
Enter error recovery
============ Parse Stack Dump ============
 Terminal: EOF State: 0
Nonterminal: DeclList State: 2
Nonterminal: Type State: 3
Nonterminal: DeclrList State: 11
 Terminal: COMMA State: 12
 Terminal: IDENT State: 9
==
Enter Find recovery state on stack
Find recovery config: Pop stack by one, state was # 9
Exit Find recovery config: Recover state found (#12)
Shift error to push state #8
Error recovery: read lookahead
Obtain token IDENT "h"
Error recovery: Trying to parse ahead
Error recovery: Consume token IDENT
Obtain token COMMA ","
Error recovery: Trying to parse ahead
Error recovery: Consume token IDENT
Obtain token IDENT "i"
Error recovery: Trying to parse ahead
Try parse ahead: Reduce by rule Declr ::= error
Try parse ahead: Shift nonterminal Declr to push state #14
Try parse ahead: Reduce by rule DeclrList ::= DeclrList COMMA Declr
Try parse ahead: Shift nonterminal DeclrList to push state #11
Try parse ahead shifts token COMMA to push state #12
Error recovery: Parse-ahead ok, going back to normal parse
Parse lookahead: Reparsing saved input with actions
Parse lookahead: Current token is COMMA
Parse lookahead: Current state is #8
Reduce by rule Declr ::= error
Parse lookahead: Shift nonterminal Declr to push state #14
Reduce by rule DeclrList ::= DeclrList COMMA Declr
Parse lookahead: Shift nonterminal DeclrList to push state #11
Shift token COMMA to push state #12
Parse lookahead: Completed reparse
Exit error recovery - success
============ Parse Stack Dump ============
 Terminal: EOF State: 0
Nonterminal: DeclList State: 2
Nonterminal: Type State: 3
Nonterminal: DeclrList State: 11
 Terminal: COMMA State: 12
==
Shift token IDENT to push state #9
Obtain token SEMICOLON ";"
Current token is SEMICOLON
Reduce by rule Declr ::= IDENT
Shift nonterminal Declr to push state #14
Reduce by rule DeclrList ::= DeclrList COMMA Declr
Shift nonterminal DeclrList to push state #11
Shift token SEMICOLON to push state #13
Obtain token IDENT "int"
Current token is IDENT
Reduce by rule Decl ::= Type DeclrList SEMICOLON
Shift nonterminal Decl to push state #6
Reduce by rule DeclList ::= DeclList Decl
Shift nonterminal DeclList to push state #2
Shift token IDENT to push state #5

Chapter 6 Error Recovery in CUP Page 10 of 13

Obtain token IDENT "j"
Current token is IDENT
Reduce by rule Type ::= IDENT
Shift nonterminal Type to push state #3
Shift token IDENT to push state #9
Obtain token ASSIGN "="
Current token is ASSIGN
Shift token ASSIGN to push state #15
Obtain token LEFTBRACE "{"
Current token is LEFTBRACE
Shift token LEFTBRACE to push state #16
Obtain token IDENT "k"
Current token is IDENT
Shift token IDENT to push state #18
Obtain token SEMICOLON ";"
Current token is SEMICOLON
Reduce by rule Expr ::= IDENT
Shift nonterminal Expr to push state #21
Enter error recovery
============ Parse Stack Dump ============
 Terminal: EOF State: 0
Nonterminal: DeclList State: 2
Nonterminal: Type State: 3
 Terminal: IDENT State: 9
 Terminal: ASSIGN State: 15
 Terminal: LEFTBRACE State: 16
Nonterminal: Expr State: 21
==
Enter Find recovery state on stack
Find recovery config: Pop stack by one, state was # 21
Exit Find recovery config: Recover state found (#16)
Shift error to push state #20
Error recovery: read lookahead
Obtain token IDENT "int"
Error recovery: Trying to parse ahead
Error recovery: Consume token SEMICOLON
Obtain token IDENT "l"
Error recovery: Trying to parse ahead
Error recovery: Consume token IDENT
Obtain token ASSIGN "="
Error recovery: Trying to parse ahead
Error recovery: Consume token IDENT
Obtain token LEFTBRACE "{"
Error recovery: Trying to parse ahead
Error recovery: Consume token ASSIGN
Obtain token IDENT "m"
Error recovery: Trying to parse ahead
Error recovery: Consume token LEFTBRACE
Obtain token COMMA ","
Error recovery: Trying to parse ahead
Error recovery: Consume token IDENT
Obtain token IDENT "n"
Error recovery: Trying to parse ahead
Error recovery: Consume token COMMA
Obtain token RIGHTBRACE "}"
Error recovery: Trying to parse ahead
Error recovery: Consume token IDENT
Obtain token COMMA ","
Error recovery: Trying to parse ahead
Try parse ahead shifts token RIGHTBRACE to push state #24
Error recovery: Parse-ahead ok, going back to normal parse

Chapter 6 Error Recovery in CUP Page 11 of 13

Parse lookahead: Reparsing saved input with actions
Parse lookahead: Current token is RIGHTBRACE
Parse lookahead: Current state is #20
Shift token RIGHTBRACE to push state #24
Parse lookahead: Completed reparse
Exit error recovery - success
============ Parse Stack Dump ============
 Terminal: EOF State: 0
Nonterminal: DeclList State: 2
Nonterminal: Type State: 3
 Terminal: IDENT State: 9
 Terminal: ASSIGN State: 15
 Terminal: LEFTBRACE State: 16
 Terminal: error State: 20
 Terminal: RIGHTBRACE State: 24
==
Reduce by rule Expr ::= LEFTBRACE error RIGHTBRACE
Shift nonterminal Expr to push state #17
Reduce by rule Declr ::= IDENT ASSIGN Expr
Shift nonterminal Declr to push state #10
Reduce by rule DeclrList ::= Declr
Shift nonterminal DeclrList to push state #11
Shift token COMMA to push state #12
Obtain token IDENT "o"
Current token is IDENT
Shift token IDENT to push state #9
Obtain token SEMICOLON ";"
Current token is SEMICOLON
Reduce by rule Declr ::= IDENT
Shift nonterminal Declr to push state #14
Reduce by rule DeclrList ::= DeclrList COMMA Declr
Shift nonterminal DeclrList to push state #11
Shift token SEMICOLON to push state #13
Obtain token EOF ""
Current token is EOF
Reduce by rule Decl ::= Type DeclrList SEMICOLON
Shift nonterminal Decl to push state #6
Reduce by rule DeclList ::= DeclList Decl
Shift nonterminal DeclList to push state #2
Reduce by rule Program ::= DeclList
Shift nonterminal Program to push state #1
Shift token EOF to push state #26
Obtain token EOF ""
Current token is EOF
Reduce by rule $START ::= Program EOF
Shift nonterminal $START to push state #-1

The rules and action and goto table are as follows.
Rules
[0] $START ::= Program EOF
[1] Program ::= DeclList
[2] DeclList ::=
[3] DeclList ::= DeclList Decl
[4] Decl ::= Type DeclrList SEMICOLON
[5] Decl ::= error SEMICOLON
[6] Type ::= IDENT
[7] DeclrList ::= Declr
[8] DeclrList ::= DeclrList COMMA Declr
[9] Declr ::= IDENT ASSIGN Expr
[10] Declr ::= IDENT
[11] Declr ::= error

Chapter 6 Error Recovery in CUP Page 12 of 13

[12] Expr ::= LEFTBRACE ExprList RIGHTBRACE
[13] Expr ::= LEFTBRACE error RIGHTBRACE
[14] Expr ::= IDENT
[15] ExprList ::= Expr
[16] ExprList ::= Expr COMMA ExprList

Action Table
From state #0
 EOF:REDUCE(rule 2) error:REDUCE(rule 2) IDENT:REDUCE(rule 2)
From state #1
 EOF:SHIFT(state 26)
From state #2
 EOF:REDUCE(rule 1) error:SHIFT(state 4) IDENT:SHIFT(state 5)
From state #3
 error:SHIFT(state 8) IDENT:SHIFT(state 9)
From state #4
 SEMICOLON:SHIFT(state 7)
From state #5
 error:REDUCE(rule 6) IDENT:REDUCE(rule 6)
From state #6
 EOF:REDUCE(rule 3) error:REDUCE(rule 3) IDENT:REDUCE(rule 3)
From state #7
 EOF:REDUCE(rule 5) error:REDUCE(rule 5) IDENT:REDUCE(rule 5)
From state #8
 SEMICOLON:REDUCE(rule 11) COMMA:REDUCE(rule 11)
From state #9
 ASSIGN:SHIFT(state 15) SEMICOLON:REDUCE(rule 10) COMMA:REDUCE(rule 10)
From state #10
 SEMICOLON:REDUCE(rule 7) COMMA:REDUCE(rule 7)
From state #11
 SEMICOLON:SHIFT(state 13) COMMA:SHIFT(state 12)
From state #12
 error:SHIFT(state 8) IDENT:SHIFT(state 9)
From state #13
 EOF:REDUCE(rule 4) error:REDUCE(rule 4) IDENT:REDUCE(rule 4)
From state #14
 SEMICOLON:REDUCE(rule 8) COMMA:REDUCE(rule 8)
From state #15
 LEFTBRACE:SHIFT(state 16) IDENT:SHIFT(state 18)
From state #16
 error:SHIFT(state 20) LEFTBRACE:SHIFT(state 16) IDENT:SHIFT(state 18)
From state #17
 SEMICOLON:REDUCE(rule 9) COMMA:REDUCE(rule 9)
From state #18
 RIGHTBRACE:REDUCE(rule 14) SEMICOLON:REDUCE(rule 14) COMMA:REDUCE(rule
14)
From state #19
 RIGHTBRACE:SHIFT(state 25)
From state #20
 RIGHTBRACE:SHIFT(state 24)
From state #21
 RIGHTBRACE:REDUCE(rule 15) COMMA:SHIFT(state 22)
From state #22
 LEFTBRACE:SHIFT(state 16) IDENT:SHIFT(state 18)
From state #23
 RIGHTBRACE:REDUCE(rule 16)
From state #24
 RIGHTBRACE:REDUCE(rule 13) SEMICOLON:REDUCE(rule 13) COMMA:REDUCE(rule
13)
From state #25
 RIGHTBRACE:REDUCE(rule 12) SEMICOLON:REDUCE(rule 12) COMMA:REDUCE(rule
12)

Chapter 6 Error Recovery in CUP Page 13 of 13

From state #26
 EOF:REDUCE(rule 0)

Goto (Reduce) Table
From state #0:
 Program:GOTO(1)
 DeclList:GOTO(2)
From state #1:
From state #2:
 Decl:GOTO(6)
 Type:GOTO(3)
From state #3:
 DeclrList:GOTO(11)
 Declr:GOTO(10)
From state #4:
From state #5:
From state #6:
From state #7:
From state #8:
From state #9:
From state #10:
From state #11:
From state #12:
 Declr:GOTO(14)
From state #13:
From state #14:
From state #15:
 Expr:GOTO(17)
From state #16:
 Expr:GOTO(21)
 ExprList:GOTO(19)
From state #17:
From state #18:
From state #19:
From state #20:
From state #21:
From state #22:
 Expr:GOTO(21)
 ExprList:GOTO(23)
From state #23:
From state #24:
From state #25:
From state #26:

Exercise
Delete the rule
Expr::=
 LEFTBRACE error RIGHTBRACE
 {:
 RESULT = new ErrorExprNode("{ ExprListError ... }");
 :}

And add the rule
ExprList::=
 error
 {:
 RESULT = new ErrorExprListNode("ExprListError ...");
 :}

to the grammar in the previous exercise, and compare parsing for
int a = { b, c, d e, f, g };

