
Chapter 2 Context Free Grammars Page 1 of 27

Chapter 2 Context Free Grammars
The second phase of compilation is Syntactic Analysis or Parsing. In this phase, the program is
analysed into its structural components - various sorts of declarations, statements, expressions, etc.
It is in this phase that structural errors are discovered. The parser (the process which performs the
syntactic analysis) outputs syntax error messages.
The parser obtains tokens, one at a time, from the lexical analyser, performs the syntactic analysis
of the structure of the program, and produces an “abstract syntax tree” which describes the structure
of the program.
Language Definition
The structure of a computer language is usually described in terms of what is called a Context Free
Grammar or Backus-Naur Form (BNF) of language definition.
A computer program is composed of tokens (Reserved words, constants, identifiers, special
symbols, etc.)
The constructs of the language are composed of other constructs and tokens, and the relationship
can be described by context free grammar rules such as:

S → E “;”
 | “{” SS “}”
 | “if” “(” E “)” S “else” S
 | “if” “(” E “)” S

SS → ε
 | SS S

E → IDENT

The symbol → means “expands to” or “generates”, “|” means “or”, and ε is just an explicit notation
for the empty string, i.e. “nothing” (to make the fact that we have nothing more noticeable than not
writing anything). In the above example, S means “Statement”, SS means “Statement Sequence”,
IDENT means “Identifier”.
A context free grammar is defined by:
• A finite set N of Nonterminal symbols, including a special symbol S called the start symbol.

A nonterminal symbol represents the name for a kind of construct, and the start symbol
represents the name of the overall construct.

• A finite set Σ of Terminal Symbols. A terminal symbol represents the name of a kind of
token.

• A finite set of rules of the form A → B1 ... Bn, where A is a nonterminal, and B1, ... Bn are
terminals or nonterminals. The notation A → α | β | γ, where α, β, γ ∈ (N∪Σ)* (the set of
sequences of terminal and nonterminal symbols), is an abbreviation for several rules with the
same left hand side (in this case A → α, A → β, and A → γ).

Suppose we have a sequence of terminal and nonterminal symbols. We can generate a new
sequence of symbols by performing what is called a “reduction”. A reduction is a replacement of a
sequence of symbols corresponding to the right hand side of a rule by the left hand side of the rule.

Chapter 2 Context Free Grammars Page 2 of 27

For example, suppose we start with the sequence α β γ, and we have a rule A → β, where α, β, γ ∈
(N∪Σ)*. Then we can reduce α β γ to the sequence of symbols α A γ. We express this by the
notation α β γ <= α A γ. (It is conventional to use lower case Greek letters for sequences of
symbols.).
Similarly, we can perform an “expansion” if we do the replacement in the reverse direction, and
replace a nonterminal corresponding to the left hand side of a rule by the symbols on the right hand
side of the rule.
For example, suppose we start with the sequence α A γ, and we have a rule A → β, where α, β, γ ∈
(N∪Σ)*. Then we can expand α A γ to the sequence of symbols α β γ. We express this by the
notation α A γ => α β γ.

A program corresponds to input that can be matched to the start symbol (often something like
“Program”, “StatementList” or “ExternalDeclarationSequence”). If we perform the matching by
starting with the input, and performing reductions, until we end up with the start symbol, then we
are performing bottom up parsing. If we perform the matching by starting with the start symbol, and
performing expansions, until we end up with the input, then we are performing top down parsing.
For example, if we have the above rules, the following input is a legal statement
{
a;
if (a) {
 a;
 a;
 }
else
 a;
}

Chapter 2 Context Free Grammars Page 3 of 27

This is because we can reduce this to S by the following sequence of reductions
 { a ; if (a) { a ; a ; } else a ; }
 Reduce by SS → ε
 <= { SS a ; if (a) { a ; a ; } else a ; }
 Reduce by E → IDENT
 <= { SS E ; if (a) { a ; a ; } else a ; }
 Reduce by S → E ;
 <= { SS S if (a) { a ; a ; } else a ; }
 Reduce by SS → SS S
 <= { SS if (a) { a ; a ; } else a ; }
 Reduce by E → IDENT
 <= { SS if (E) { a ; a ; } else a ; }
 Reduce by SS → ε
 <= { SS if (E) { SS a ; a ; } else a ; }
 Reduce by E → IDENT
 <= { SS if (E) { SS E ; a ; } else a ; }
 Reduce by S → E ;
 <= { SS if (E) { SS S a ; } else a ; }
 Reduce by SS → SS S
 <= { SS if (E) { SS a ; } else a ; }
 Reduce by E → IDENT
 <= { SS if (E) { SS E ; } else a ; }
 Reduce by S → E ;
 <= { SS if (E) { SS S } else a ; }
 Reduce by SS → SS S
 <= { SS if (E) { SS } else a ; }
 Reduce by S → { SS }
 <= { SS if (E) S else a ; }
 Reduce by E → IDENT
 <= { SS if (E) S else E ; }
 Reduce by S → E ;
 <= { SS if (E) S else S }
 Reduce by S → if (E) S else S
 <= { SS S }
 Reduce by SS → SS S
 <= { SS }
 Reduce by S → { SS }
 <= S
 Accept
The sequence of symbols formed at each stage of the sequence is called a “sentential form”. (The
terminology comes from the parsing of natural language, in which we are trying to parse a
sentence.)
A parse tree can be built to represent the structure of the program. The root node is the start symbol.
The internal nodes of the tree correspond to the rules used to reduce the program to the start
symbol. There are also terminal nodes corresponding to the terminal symbols in the input that have
attributes. Essentially we create the parse tree in a bottom up fashion, creating a new node
whenever we perform a reduction.

Chapter 2 Context Free Grammars Page 4 of 27

Example
{
a;
if (a) {
 a;
 a;
 }
else
 a;
}

generates the parse tree shown below

S !
{ SS }

S !
if (E) S else S

S

S !
E ;

SS !
"

SS !
SS S

E !
IDENT

E !
IDENT

E !
IDENT

E !
IDENT

E !
IDENT

SS !
"

S !
E ;

S !
E ;

S !
E ;

SS !
SS S

SS !
SS S

S !
{ SS }

SS !
SS S

Chapter 2 Context Free Grammars Page 5 of 27

Sometimes nodes of the parse tree are irrelevant as far as the rest of the compiler is concerned. For
example, the code generated for a parenthesised expression is the same as for an unparenthesised
expression. The parentheses might have been important when performing parsing, in that they
determined how operators and operands were grouped, but once the structure of the expression has
been determined, they can be ignored. Similarly, nodes corresponding to precedence specifying
rules, such as E → T, T → F can be discarded.

Chapter 2 Context Free Grammars Page 6 of 27

For example, if we have the grammar rules
E → E “+” T | E “-” T | “-” T | T
T → T “*” F | T “/” F | F
F → IDENT | NUMBER | “(” E “)”

(E means Expression, T means Term, F means Factor).
Then the expression (a + b) * (c + d) - e * f generates the parse tree

E !
E + T

E !
E - T

F !
IDENT

F !
(E)

E !
T

T !
F

b c d e fa

T !
T * F

E

E !
T

F !
IDENT

F !
IDENT

F !
IDENT

F !
IDENT

F !
IDENT

T !
F

T !
F

T !
F

T !
F

E !
T

E !
E + T

F !
(E)

T !
F

T !
T * F

Chapter 2 Context Free Grammars Page 7 of 27

but can be simplified to the abstract syntax tree

PlusNode

MinusNode

IdentNode

b c d e fa

TimesNode

PlusNode

IdentNode IdentNode IdentNode IdentNode IdentNode

TimesNode

While it is a bit early to show you a CUP program, perhaps you can see how this is matched by the
following code. The Java code enclosed in {:...:} represents the code to build a node of the tree.
Expr::=
 Expr:expr PLUS Term:term
 {:
 RESULT = new PlusNode(expr, term);
 :}
 |
 Expr:expr MINUS Term:term
 {:
 RESULT = new MinusNode(expr, term);
 :}
 |
 MINUS Term:term
 {:
 RESULT = new NegateNode(term);
 :}
 |
 Term:term
 {:
 RESULT = term;
 :}
 ;

Term::=
 Term:term TIMES Factor:factor
 {:
 RESULT = new TimesNode(term, factor);
 :}
 |
 Term:term DIVIDE Factor:factor
 {:
 RESULT = new DivideNode(term, factor);
 :}
 |
 Factor:factor
 {:
 RESULT = factor;
 :}

Chapter 2 Context Free Grammars Page 8 of 27

 ;

Factor::=
 LEFT Expr:expr RIGHT
 {:
 RESULT = expr;
 :}
 |
 NUMBER:value
 {:
 RESULT = new NumberNode(Integer.parseInt(value));
 :}
 |
 IDENT:ident
 {:
 RESULT = new IdentNode(ident);
 :}
 ;

Bottom Up (Shift-Reduce) Parsing
To perform a bottom up or shift-reduce parse, we use a stack of terminal and nonterminal symbols.
We process the input from left to right. At each stage, the stack corresponds to the terminal
symbols and constructs processed so far. The stack, concatenated with the remaining input yet to
be processed, constitute a sentential form. Initially the stack contains just a “bottom of stack”
marker, “$”. The stack is considered to grow from left to right.
We shift the input onto the stack, until we have a complete right hand side of a rule on the top of the
stack. Whenever a complete right hand side of a rule appears on the top of the stack, we reduce it to
its left hand side (i.e., replace it by the left hand side of the rule). We terminate when we shift the
end of file marker (also represented by “$”) onto the stack and the stack contains
“$ StartSymbol $”.
The decision on whether to shift or reduce, and if to reduce, which rule to reduce by, is made on the
basis of the top portion of the stack, and the current token. The exact algorithm for making this
decision varies for different forms of bottom up parsing, and the decision making is not trivial. A
program called a parser generator is normally used to generate tables used to drive the parser.
The algorithm for bottom up parsing is shown below.
Make the stack “$”;

GetToken();

forever
 {
 if (Stack is “$ StartSymbol $”)
 return;
 else if (Stack and CurrToken imply
 have partial righthand side of rule on top of stack)
 Shift CurrToken onto stack;
 GetToken();
 }
 else if (Stack and CurrToken imply
 have complete righthand side of rule on top of stack)
 Replace righthand side of rule on top of stack by lefthand side;
 else
 error();
 }

Chapter 2 Context Free Grammars Page 9 of 27

Example
Consider the grammar

E → E “+” T | E “-” T | “-” T | T
T → T “*” F | T “/” F | F
F → IDENT | NUMBER | “(” E “)”

and the input
 a + b + c * d,
where a, b, c, d are all considered as identifiers. We can reduce the input to the start symbol E by

 a + b + c * d
 Reduce F → IDENT
 <= F + b + c * d
 Reduce T → F
 <= T + b + c * d
 Reduce E → T
 <= E + b + c * d
 Reduce F → IDENT
 <= E + F + c * d
 Reduce T → F
 <= E + T + c * d
 Reduce E → E + T
 <= E + c * d
 Reduce F → IDENT
 <= E + F * d
 Reduce T → F
 <= E + T * d
 Reduce F → IDENT
 <= E + T * F
 Reduce T → T * F
 <= E + T
 Reduce E → E + T
 <= E
 Accept

Chapter 2 Context Free Grammars Page 10 of 27

The bottom up parse of the input is shown below. $ represents both bottom of stack and end of
input.

Stack Input Remaining Action
---->grows

$ a + b + c * d $ Shift IDENT
$ Id + b + c * d $ Reduce F → IDENT
$ F + b + c * d $ Reduce T → F
$ T + b + c * d $ Reduce E → T
$ E + b + c * d $ Shift +
$ E + b + c * d $ Shift IDENT
$ E + Id + c * d $ Reduce F → IDENT
$ E + F + c * d $ Reduce T → F
$ E + T + c * d $ Reduce E → E + T
$ E + c * d $ Shift +
$ E + c * d $ Shift IDENT
$ E + Id * d $ Reduce F → IDENT
$ E + F * d $ Reduce T → F
$ E + T * d $ Shift *
$ E + T * d $ Shift IDENT
$ E + T * Id $ Reduce F → IDENT
$ E + T * F $ Reduce T → T * F
$ E + T $ Reduce E → E + T
$ E $ Shift $
$ E $ Accept

Chapter 2 Context Free Grammars Page 11 of 27

LALR(1) Parsing
In many forms of bottom up parsing, we place “states” on the stack, rather than terminal and
nonterminal symbols. A state indicates all the possible rules we may be in the process of analysing,
where we are up to in our analysis, and perhaps the possible terminal symbols that can follow the
application of the rule. A state summarises all the information in the stack that is relevant in
deciding whether to shift or reduce, and if to reduce, which rule to reduce by. While states are
complicated objects, there are only a finite number of possible states, and these states can be
precomputed by the parser generator, and referred to by number, when parsing is performed.
An action table is created to indicate the action to perform for a given state and input token. The
action table is a mapping indexed by the top of stack state and current token. It returns a value of
the form:
• SHIFT State
• REDUCE Rule
• ACCEPT
• ERROR
There is also a goto table created to indicate the state to push on when a reduction is performed. The
goto table is a mapping indexed by the top of stack state uncovered after removal of the states
corresponding to the right hand side of the rule, and the nonterminal corresponding to the left hand
side to be pushed onto the stack. It returns the new state to be pushed onto the stack.
These tables are used to drive the parser. This form of bottom up parsing is called LR parsing. The
parsing algorithm is shown below.

Chapter 2 Context Free Grammars Page 12 of 27

Start with a stack of the form
 state 0
 --->grows
where state 0 corresponds to having seen no input;

GetToken();

forever {
 /*
 Index the action table by
 the top of stack state
 and the current token
 to get the action to perform
 */
 CurrAction = Action[TopStack(), CurrToken];
 switch (CurrAction.ActionSort) {
 case SHIFT:
 /*
 Push the indicated state onto the stack
 */
 Push(CurrAction.ShiftState);
 /*
 Get the next token
 */
 GetToken();
 break;
 case REDUCE:
 Perform code associated with CurrAction.ReduceRule
 (e.g., build node of tree corresponding to
 the grammar rule);
 /*
 Pop the states corresponding to
 the righthand side of the rule
 off the stack
 */
 Pop CurrentAction.ReduceRule.RHS.length()
 states off the stack;
 /*
 Index the goto table by
 the state uncovered on the top of stack
 and the nonterminal corresponding to
 the lefthand side of the rule
 and push the state found in the goto table
 onto the stack;
 */
 Push(GoTo[TopStack(),
 CurrentAction.ReduceRule.LHS]);
 break;
 case ACCEPT:
 /*
 Complete parsing
 */
 return;
 case ERROR:
 /*
 Generate an error message
 */
 error();
 break;
 }
 }

Chapter 2 Context Free Grammars Page 13 of 27

Example
Consider the grammar
StmtList →

 ε
 |
 StmtList Stmt “\n”
 |
 StmtList error “\n”
 |
 StmtList “\n”

Stmt →
 IDENT “=” Expr
 |
 Expr

Expr →
 Expr “+” Term
 |
 Expr “-” Term
 |
 “-” Term
 |
 Term

Term →
 Term “*” Factor
 |
 Term “/” Factor
 |
 Factor

Factor →
 “(” Expr “)”
 |
 NUMBER
 |
 IDENT

Chapter 2 Context Free Grammars Page 14 of 27

This grammar generates the LALR(1) action table shown below.
State Meaning State $ err () \n + - * / = Num Id

 0 r1 r1 r1 r1 r1 r1 r1
StmtList 1 s11 s12 s8 s4 s9 s2 s3
Number 2 r15 r15 r15 r15 r15 r15

Ident 3 r16 r16 r16 r16 r16 s27
StmtList \n 4 r4 r4 r4 r4 r4 r4 r4

Expr 5 r6 s23 s22
Factor 6 r13 r13 r13 r13 r13 r13
Term 7 r10 r10 r10 r10 s17 s18

(8 s8 s9 s2 s15
- 9 s8 s2 s15

StmtList Stmt 10 s14
$ StmtList $ 11 Acc

StmtList error 12 s13
StmtList error \n 13 r3 r3 r3 r3 r3 r3 r3
StmtList Stmt \n 14 r2 r2 r2 r2 r2 r2 r2

Ident 15 r16 r16 r16 r16 r16 r16
- Term 16 r9 r9 r9 r9 s17 s18
Term * 17 s8 s2 s15
Term / 18 s8 s2 s15

Term / Factor 19 r12 r12 r12 r12 r12 r12
Term * Factor 20 r11 r11 r11 r11 r11 r11

(Expr 21 s24 s23 s22
Expr - 22 s8 s2 s15
Expr + 23 s8 s2 s15

(Expr) 24 r14 r14 r14 r14 r14 r14
Expr + Term 25 r7 r7 r7 r7 s17 s18
Expr - Term 26 r8 r8 r8 r8 s17 s18

Ident = 27 s8 s9 s2 s15
Ident = Expr 28 r5 s23 s22

sn means shift state n, rn means reduce by rule n. Acc means accept, and a blank means an error. $
is used to represent the end of text.

Chapter 2 Context Free Grammars Page 15 of 27

This grammar generates the LALR(1) goto table shown below.
State StmL Stmt E T F

0 s1 r1 = StmtList → ε
1 s10 s5 s7 s6
2 r15 = Factor → Number
3 r16 = Factor → Ident
4 r4 = StmtList → StmtList \n
5 r6 = Stmt → Expr
6 r13 = Term → Factor
7 r10 = Expr → Term
8 s21 s7 s6
9 s16 s6

10
11
12
13 r3 = StmtList → StmtList error \n
14 r2 = StmtList → StmtList Stmt \n
15 r16 = Factor → Ident
16 r9 = Expr → - Term
17 s20
18 s19
19 r12 = Term → Term / Factor
20 r11 = Term → Term * Factor
21
22 s26 s6
23 s25 s6
24 r14 = Factor → (Expr)
25 r7 = Expr → Expr + Term
26 r8 = Expr → Expr - Term
27 s28 s7 s6
28 r5 = Stmt → Ident = Expr

sn means shift state n.

Chapter 2 Context Free Grammars Page 16 of 27

A state summarises all the relevant information for determining the action, that can be gleaned from
the (conventional) stack of symbols. For example, state 20 represents a stack of the form “... Term *
Factor”, for which we know that we should reduce “Term * Factor” to “Term”. State 25 represents
a stack of the form “...Expr + Term”, for which we should reduce “Expr + Term” to “Expr” if the
current token is not a higher precedence operator, such as “*” or “/”. If the current token is “*” or
“/”, we should shift, rather than reduce.
Using the table, we can perform a bottom up parse of the input
 a + b + c * d \n

where we assume that a, b, c, d are all tokenised to IDENT by the lexical analyser. This is
illustrated below.

Stack Input Action

$0 Id a Reduce StmtList → ε

$0 SL1 Shift Id3
$0 SL1 Id3 + Reduce F → Ident

$0 SL1 F6 Reduce T → F
$0 SL1 T7 Reduce E → T
$0 SL1 E5 Shift +23
$0 SL1 E5 +23 Id b Shift Id15

$0 SL1 E5 +23 Id15 + Reduce F → Ident
$0 SL1 E5 +23 F6 Reduce T → F
$0 SL1 E5 +23 T25 Reduce E → E + T
$0 SL1 E5 Shift +23

$0 SL1 E5 +23 Id c Shift Id15
$0 SL1 E5 +23 Id15 * Reduce F → Ident
$0 SL1 E5 +23 F6 Reduce T → F
$0 SL1 E5 +23 T25 Shift *17

$0 SL1 E5 +23 T25 *17 Id d Shift Id15
$0 SL1 E5 +23 T25 *17 Id15 \n Reduce F → Ident
$0 SL1 E5 +23 T25 *17 F20 Reduce T → T * F
$0 SL1 E5 +23 T25 Reduce E → E + T

$0 SL1 E5 Reduce S → E
$0 SL1 S10 Shift \n14
$0 SL1 S10 \n14 $ Reduce StmtList → StmtList Stmt \n
$0 SL1 Shift $11

$0 SL1 $11 Accept

Terminal and nonterminal symbols have been appended to the states, to indicate the top of stack
symbol that they would conventionally correspond to. In practice, only the states appear on the
stack, but these symbols have been added for readablity.

Chapter 2 Context Free Grammars Page 17 of 27

Consider another example
 a * (- b) \n

Stack Input Action

$0 Id a Reduce StmtList → ε

$0 SL1 Shift Id3

$0 SL1 Id3 * Reduce F → Ident
$0 SL1 F6 Reduce T → F
$0 SL1 T7 Shift *17
$0 SL1 T7 *17 (Shift (8

$0 SL1 T7 *17 (8 - Shift -9
$0 SL1 T7 *17 (8 -9 Id b Shift Id15
$0 SL1 T7 *17 (8 -9 Id15) Reduce F → Ident

$0 SL1 T7 *17 (8 -9 F6 Reduce T → F

$0 SL1 T7 *17 (8 -9 T16 Reduce E → -T

$0 SL1 T7 *17 (8 E21 Shift)24
$0 SL1 T7 *17 (8 E21)24 \n Reduce F → (E)
$0 SL1 T7 *17 F20 Reduce T → T * F
$0 SL1 T7 Reduce E → T

$0 SL1 E5 Reduce S → E
$0 SL1 S10 Shift \n14
$0 SL1 S10 \n14 $ Reduce StmtList → StmtList Stmt \n
$0 SL1 Shift $11

$0 SL1 $11 Accept

Chapter 2 Context Free Grammars Page 18 of 27

A bottom up parse of the invalid input
 - a * b + c * - d \n
is shown below.

Stack Input Action
$0 - Reduce StmtList → ε

$0 SL1 Shift -9
$0 SL1 -9 Id a Shift Id15
$0 SL1 -9 Id15 * Reduce F → Ident

$0 SL1 -9 F6 Reduce T → F
$0 SL1 -9 T16 Shift *17
$0 SL1 -9 T16 *17 Id b Shift Id15
$0 SL1 -9 T16 *17 Id15 + Reduce F → Ident
$0 SL1 -9 T16 *17 F20 Reduce T → T * F

$0 SL1 -9 T16 Reduce E → - T
$0 SL1 E5 Shift +23
$0 SL1 E5 +23 Id c Shift Id15
$0 SL1 E5 +23 Id15 * Reduce F → Ident

$0 SL1 E5 +23 F6 Reduce T → F
$0 SL1 E5 +23 T25 Shift *17
$0 SL1 E5 +23 T25 *17 - Error (Cannot parse due to invalid input).

The derivation of the action and goto tables is nontrivial. It should nevertheless be obvious that,
given the tables, it is a simple matter to perform a bottom up parse of the input.

States
A state corresponds to a set of “items”.
An item is a rule we may be in the process of analysing, together with an indication of where
we are up to in analysing the rule (represented by a “.” inserted in the right hand side of the
rule), and an indication of the tokens that could follow the construct corresponding to the
rule.
For example, we could have the item
Rule with “.” Follow symbols
Term → Term . * Factor) \n + - * /

Since there are only a finite number of possible rules, possible places in the rule, and possible
follow symbols, there are only a finite number of possible items, and hence only a finite number of
possible states. Thus it is possible to identify each state with a number.
There is a mapping from conventional stacks (in other words, sequences of symbols) to states.
Stacks that can actually occur (what are called “viable prefixes” of “right sentential forms”) map to
nonempty states, while impossible stacks map to the empty set (which is not regarded as a state).
• The state corresponding to a stack is intended to summarise all important information

on the stack, about rules we might be in the process of analysing, necessary for deciding
what action to perform.

• There is a state (State 0) that corresponds to an empty stack.

Chapter 2 Context Free Grammars Page 19 of 27

• The state corresponding to a stack α X can be computed from the state corresponding to
α , and the symbol X.

• The function that performs this mapping is called the goto function.
• If Q is the state corresponding to stack α, then goto(Q, X) is the state corresponding to

the stack α X.
• We can generate the state corresponding to X1 X2 … Xn by computing

 Q1 = goto(State 0, X1), Q2 = goto(Q1, X2), … Qn = goto(Qn-1, Xn).

It turns out to be convenient to augment our grammar, by adding an extra rule. Suppose S is the
start symbol. CUP adds another rule S’ → $ S $, where $ represents the beginning and end of
input. (Other parser generators add a rule S’ → S instead, and there are minor differences with
regard to the point at which the parse is accepted).
State 0, the state corresponding to the empty stack, is generated by taking the “closure” of the
set { [S’ → $. S $, {}] }. This represents having processed nothing, and expecting to process S,
followed by end of input.
Goto(Q, X) is the state formed by taking the “closure” of
{ [A → α X . β , F] for which [A → α . X β , F] ∈ Q }.
(If [A → α . X β, F] was possible before processing X, then [A → α X . β, F] must be possible
after processing X.)
How do we take the closure of a set of items Q?
If there is already an item of the form [A → α . B β , F] in Q, and there is a rule of the form
B → γ:
• If β is present, add [B → .γ , first(β)] to Q. (These follow symbols are said to be

spontaneously generated from the item [A → α . B β, F]).
• If β is nullable (is not present, or can expand to nothing), add [B → .γ , F] to Q. (These

follow symbols are said to propagate from the item [A → α . B β, F]).

We continue to do this until a complete pass through the items in Q adds no more items to Q.
(Because if the item [A → α . B β, F] is possible, we might be starting the construct B, and hence
we might be starting γ. Thus taking the closure amounts to adding in the additional items that must
be possible, as a consequence of the existing items.)
• To generate all possible states, we can start with state 0, and keep processing states,

generating goto(Q, X) for all states Q and symbols X, until a complete pass through the
set of states generates no new states.

The set of items in a state that have symbols to the left of the “.” is called the kernel set of items of
the state. This is effectively what you get by taking the goto of another state (selecting states to
process, and shifting the “.” over the symbol X), but not taking the closure. The full set of items
can be derived from the kernel set. This used to be important in the days of machines with 64KB of
memory. It meant that the states could be stored more concisely.

Chapter 2 Context Free Grammars Page 20 of 27

LALR(1) and LR(1) states
There are variations of the above algorithm, that generate different states, and hence different
parsing tables. These include LALR(1) and LR(1) systems of bottom up parsing. (LR = Process
from the Left, producing a Right parse. LALR = LookAhead LR. The parameter indicates the
number of tokens of lookahead.).
The core of a state is the set of items, after discarding the follow symbols.
• With what is called LR(1) parsing, states are considered to be the same if the items are

the same, taking into account any differences in the follow symbols.
• With what is called LALR(1) parsing, states are considered to be the same if the items

are the same, ignoring any differences in the follow symbols. We compute the states as
for LR(1) parsing, but merge states that have the same “core”.

• There is a many to 1 mapping from LR(1) states to LALR(1) states. An LALR(1) state
is formed by merging LR(1) states with the same “core”.

Generation of the parsing tables
Sometimes we have a grammar that is not parsable by a particular system. Usually this is because
the grammar is in fact ambiguous (there is more than one way of parsing the input). However, the
reason could be more subtle than this. It could be that we have to look more than one token beyond
the end of the rule to determine the rule to apply. In this case the grammar is not LR(1). If a
grammar is LR(1), but not LALR(1), then the LALR(1) state does not summarise enough
information about the stack to permit us to make the appropriate decision.
The action and goto tables are derived from the states.
Action(State Q, Terminal x) =
• Shift goto(Q, x), if there is an item of the form [A → β . x γ , F] ∈ Q. Under these

circumstances, goto(Q, x) will be nonempty.
• Reduce by Rule A → β, if the item [A → β . , F] ∈ Q, and x ∈ F.
• Accept, if the item [S’ → $ S $. , {}] ∈ Q and x = $, the end of text symbol.
• Error, otherwise.
GoTo(State Q, Nonterminal B) =
• Shift goto(Q, B), if there is an item of the form [A → α . B β , F] ∈ Q. Under these

circumstances, goto(Q, B) will be nonempty.
• Error, otherwise.
If a grammar is not parsable, then the action table has conflicts (i.e., more than one
alternative action for a given state and terminal symbol). There are two kinds of conflicts -
shift/reduce and reduce/reduce conflicts.
• A shift/reduce conflict occurs for a state Q and current token x, if there is both an item

of the form [A → β1 . x γ , F1] ∈ Q and an item of the form [B → β2 . , F2] ∈ Q, where
x ∈ F2.

• A reduce/reduce conflict occurs for a state Q and current token x, if there is both an
item of the form [A → β1 . , F1] ∈ Q, where x ∈ F1 and an item of the form [B → β2 . ,
F2] ∈ Q, where x ∈ F2.

Chapter 2 Context Free Grammars Page 21 of 27

(One of β1 and β2 will be a suffix of the other.)

• In terms of power (ability to parse more grammars, and detect errors sooner), LALR(1)
is less powerful than LR(1).

• More powerful parsing techniques have fewer non-error entries than less powerful
techniques. Thus a more powerful technique detects an error in the input sooner.

We must then make some decision on how to resolve the conflict (i.e. prefer one action over
another), or use a more powerful method that does not generate conflicts.
Usually reduce/reduce conflicts represent a major error in the design of the grammar, and cannot be
resolved. Shift/reduce conflicts are relatively common, and often relate to operator precedence or
processing nested “if” statements with a single “else”. The shift/reduce conflict for nested if
statements is usually resolved by preferring the shift over the reduction. For operators, we have to
take into account the precedence of the operators.
When parsing with tables generated by a less powerful method, we may perform more
reductions before detecting an error, than we would with a more powerful method. However,
no matter what method is used for generating the tables, we never perform a shift when the
current token is in error.
The LR(1) method produces more states than the other methods. There is a many to one
mapping of LR(1) states onto LALR(1) states. (For typical computer languages, there are
hundreds of LALR(1) states, and thousands of LR(1) states. Each LALR(1) state for expressions
splits into multiple LR(1) states, with one for each terminal that can follow the expression. For
example, in Pascal “while Expr” will be followed by “do”, and “if Expr” by “then”. The LALR(1)
states corresponding to having shifted “while Expr <” and “if Expr <” are the same (the closure of
the item [Expr → Expr < . Expr]), but the LR(1) states are different.) An LALR(1) state is the
union of all LR(1) states with the same “core” - the state formed from an LR(1) state by stripping
the follow symbols from the component items.
LALR(1) parsing has less theoretical justification than LR(1) parsing, but LALR(1) parsing has an
advantages in terms of the number of states, while having the decision making power of LR(1)
parsing, for almost all practical grammars.
The LALR(1) state summarises all the information that is relevant in deciding whether to shift or
reduce, and if to reduce, which rule to reduce by, given only 1 token lookahead and the possible
rules we might be processing as information when making a decision. The LALR(1) parser detects
an error at the first possible occasion given only the potential rules, and the current token, as
information.
There is also a method of parsing called SLR(1) (Simple LR(1)) parsing. In this method of parsing,
the items in the states do not include the follow symbols. We use the follow set of the lefthand side
instead. SLR(1) parsing is less powerful than LALR(1), but it is easier to compute the tables.
The actions for an LALR(1) state with a given token, are essentially just equal to the merged
actions of the component LR(1) states. If there is a conflict for an LR(1) state, then that
conflict also occurs for the LALR(1) state it merges into. Any shift action that occurs for an
LALR(1) state, occurs for all component LR(1) states, while a reduce action will only occur in
some of the LR(1) states. A consequence of this is that using LR(1) instead of LALR(1), may
decrease the number of reduce/reduce conflicts, but will not affect the existence of
shift/reduce conflicts.

Chapter 2 Context Free Grammars Page 22 of 27

An Example
The above grammar, when processed by the CUP parser generator, generates the following
LALR(1) states. The “.” on the right hand side of the rule represents where we could be up to in
parsing. The list of terminal symbols on the right indicate the symbols that could follow the
application of the rule. After the set of items that make up a state, is the goto mapping, for symbols
for which it is not empty.
Try and match the table entries to the information in the states.
For example, in State 17, we have the following information:
State 17
Factor → . (Expr)) \n + - * /
Factor → . IDENT) \n + - * /
Factor → . NUMBER) \n + - * /
Term → Term * . Factor) \n + - * /
(Go to State 8
Factor Go to State 20
IDENT Go to State 15
NUMBER Go to State 2
So, we shift state 8 if the current token is a “(”, we shift state 15 if the current token is an identifier,
we shift state 2 if the current token is a number, and if we get state 17 on the top of stack after
reducing something to a Factor, we shift state 20.
In State 25, we have the following information:
State 25
Expr → Expr + Term .) \n + -
Term → Term . * Factor) \n + - * /
Term → Term . / Factor) \n + - * /
* Go to State 17
/ Go to State 18
So, we shift state 17 if the current token is a “*”, shift state 18 if the current token is a “/”, reduce
by rule “Expr → Expr + Term” if the current token can follow this rule, namely “)”, “\n”, “+”, “-”.

It is important to be able to “read” the description of the set of states (generated as output by the
CUP parser generator), when attempting to debug your grammar definition.
State 0
$START → $. StmtList $ $
StmtList → . $ error (\n - NUMBER IDENT
StmtList → . StmtList error \n $ error (\n - NUMBER IDENT
StmtList → . StmtList Stmt \n $ error (\n - NUMBER IDENT
StmtList → . StmtList \n $ error (\n - NUMBER IDENT
StmtList Go to State 1

State 1
$START → $ StmtList . $ $
Expr → . - Term \n + -
Expr → . Expr + Term \n + -
Expr → . Expr - Term \n + -
Expr → . Term \n + -

Chapter 2 Context Free Grammars Page 23 of 27

Factor → . (Expr) \n + - * /
Factor → . IDENT \n + - * /
Factor → . NUMBER \n + - * /
StmtList → StmtList . error \n $ error (\n - NUMBER IDENT
StmtList → StmtList . Stmt \n $ error (\n - NUMBER IDENT
StmtList → StmtList . \n $ error (\n - NUMBER IDENT
Stmt → . Expr \n
Stmt → . IDENT ASSIGN Expr \n
Term → . Factor \n + - * /
Term → . Term * Factor \n + - * /
Term → . Term / Factor \n + - * /
- Go to State 9
NUMBER Go to State 2
IDENT Go to State 3
\n Go to State 4
Expr Go to State 5
Factor Go to State 6
Term Go to State 7
(Go to State 8
Stmt Go to State 10
$ Go to State 11
error Go to State 12
State 2
Factor → NUMBER .) \n + - * /

State 3
Factor → IDENT . \n + - * /
Stmt → IDENT . ASSIGN Expr \n
ASSIGN Go to State 27
State 4
StmtList → StmtList \n . $ error (\n - NUMBER IDENT

State 5
Expr → Expr . + Term \n + -
Expr → Expr . - Term \n + -
Stmt → Expr . \n
+ Go to State 23
- Go to State 22
State 6
Term → Factor .) \n + - * /

State 7
Expr → Term .) \n + -
Term → Term . * Factor) \n + - * /
Term → Term . / Factor) \n + - * /
* Go to State 17
/ Go to State 18
State 8
Expr → . - Term) + -

Chapter 2 Context Free Grammars Page 24 of 27

Expr → . Expr + Term) + -
Expr → . Expr - Term) + -
Expr → . Term) + -
Factor → (. Expr)) \n + - * /
Factor → . (Expr)) + - * /
Factor → . IDENT) + - * /
Factor → . NUMBER) + - * /
Term → . Factor) + - * /
Term → . Term * Factor) + - * /
Term → . Term / Factor) + - * /
(Go to State 8
- Go to State 9
Expr Go to State 21
Factor Go to State 6
IDENT Go to State 15
NUMBER Go to State 2
Term Go to State 7
State 9
Expr → - . Term) \n + -
Factor → . (Expr)) \n + - * /
Factor → . IDENT) \n + - * /
Factor → . NUMBER) \n + - * /
Term → . Factor) \n + - * /
Term → . Term * Factor) \n + - * /
Term → . Term / Factor) \n + - * /
(Go to State 8
Factor Go to State 6
IDENT Go to State 15
NUMBER Go to State 2
Term Go to State 16
State 10
StmtList → StmtList Stmt . \n $ error (\n - NUMBER IDENT
\n Go to State 14

State 11
$START → $ StmtList $. $

State 12
StmtList → StmtList error . \n $ error (\n - NUMBER IDENT
\n Go to State 13

State 13
StmtList → StmtList error \n . $ error (\n - NUMBER IDENT

State 14
StmtList → StmtList Stmt \n . $ error (\n - NUMBER IDENT

State 15
Factor → IDENT .) \n + - * /

State 16
Expr → - Term .) \n + -

Chapter 2 Context Free Grammars Page 25 of 27

Term → Term . * Factor) \n + - * /
Term → Term . / Factor) \n + - * /
* Go to State 17
/ Go to State 18
State 17
Factor → . (Expr)) \n + - * /
Factor → . IDENT) \n + - * /
Factor → . NUMBER) \n + - * /
Term → Term * . Factor) \n + - * /
(Go to State 8
Factor Go to State 20
IDENT Go to State 15
NUMBER Go to State 2
State 18
Factor → . (Expr)) \n + - * /
Factor → . IDENT) \n + - * /
Factor → . NUMBER) \n + - * /
Term → Term / . Factor) \n + - * /
(Go to State 8
Factor Go to State 19
IDENT Go to State 15
NUMBER Go to State 2
State 19
Term → Term / Factor .) \n + - * /

State 20
Term → Term * Factor .) \n + - * /

State 21
Expr → Expr . + Term) + -
Expr → Expr . - Term) + -
Factor → (Expr .)) \n + - * /
) Go to State 24
+ Go to State 23
- Go to State 22

State 22
Expr → Expr - . Term) \n + -
Factor → . (Expr)) \n + - * /
Factor → . IDENT) \n + - * /
Factor → . NUMBER) \n + - * /
Term → . Factor) \n + - * /
Term → . Term * Factor) \n + - * /
Term → . Term / Factor) \n + - * /
(Go to State 8
Factor Go to State 6
IDENT Go to State 15
NUMBER Go to State 2
Term Go to State 26

Chapter 2 Context Free Grammars Page 26 of 27

State 23
Expr → Expr + . Term) \n + -
Factor → . (Expr)) \n + - * /
Factor → . IDENT) \n + - * /
Factor → . NUMBER) \n + - * /
Term → . Factor) \n + - * /
Term → . Term * Factor) \n + - * /
Term → . Term / Factor) \n + - * /
(Go to State 8
Factor Go to State 6
IDENT Go to State 15
NUMBER Go to State 2
Term Go to State 25
State 24
Factor → (Expr) .) \n + - * /

State 25
Expr → Expr + Term .) \n + -
Term → Term . * Factor) \n + - * /
Term → Term . / Factor) \n + - * /
* Go to State 17
/ Go to State 18
State 26
Expr → Expr - Term .) \n + -
Term → Term . * Factor) \n + - * /
Term → Term . / Factor) \n + - * /
* Go to State 17
/ Go to State 18
State 27
Expr → . - Term \n + -
Expr → . Expr + Term \n + -
Expr → . Expr - Term \n + -
Expr → . Term \n + -
Factor → . (Expr) \n + - * /
Factor → . IDENT \n + - * /
Factor → . NUMBER \n + - * /
Stmt → IDENT ASSIGN . Expr \n
Term → . Factor \n + - * /
Term → . Term * Factor \n + - * /
Term → . Term / Factor \n + - * /
(Go to State 8
- Go to State 9
Expr Go to State 28
Factor Go to State 6
IDENT Go to State 15
NUMBER Go to State 2
Term Go to State 7

Chapter 2 Context Free Grammars Page 27 of 27

State 28
Expr → Expr . + Term \n + -
Expr → Expr . - Term \n + -
Stmt → IDENT ASSIGN Expr . \n
+ Go to State 23
- Go to State 22

