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Chapter 2 Context Free Grammars 
The second phase of compilation is Syntactic Analysis or Parsing. In this phase, the program is 
analysed into its structural components - various sorts of declarations, statements, expressions, etc.  
It is in this phase that structural errors are discovered. The parser (the process which performs the 
syntactic analysis) outputs syntax error messages.  
The parser obtains tokens, one at a time, from the lexical analyser, performs the syntactic analysis 
of the structure of the program, and produces an “abstract syntax tree” which describes the structure 
of the program.  
Language Definition  
The structure of a computer language is usually described in terms of what is called a Context Free 
Grammar or Backus-Naur Form (BNF) of language definition. 
A computer program is composed of tokens (Reserved words, constants, identifiers, special 
symbols, etc.)  
The constructs of the language are composed of other constructs and tokens, and the relationship 
can be described by context free grammar rules such as:  

S  →  E “;” 
  |  “{” SS “}” 
  |  “if” “(” E “)” S “else” S 
  |  “if” “(” E “)” S 
 
SS  →  ε 
  |  SS S 
 
E  →  IDENT 

The symbol → means “expands to” or “generates”, “|” means “or”, and ε is just an explicit notation 
for the empty string, i.e. “nothing” (to make the fact that we have nothing more noticeable than not 
writing anything).  In the above example, S means “Statement”, SS means “Statement Sequence”, 
IDENT means “Identifier”. 
A context free grammar is defined by: 
• A finite set N of Nonterminal symbols, including a special symbol S called the start symbol.  

A nonterminal symbol represents the name for a kind of construct, and the start symbol 
represents the name of the overall construct. 

• A finite set Σ of Terminal Symbols.  A terminal symbol represents the name of a kind of 
token.  

• A finite set of rules of the form A → B1 ... Bn, where A is a nonterminal, and B1, ... Bn are 
terminals or nonterminals. The notation A → α | β | γ, where α, β, γ ∈ (N∪Σ)* (the set of 
sequences of terminal and nonterminal symbols), is an abbreviation for several rules with the 
same left hand side (in this case A → α, A → β, and A → γ ).  

Suppose we have a sequence of terminal and nonterminal symbols.  We can generate a new 
sequence of symbols by performing what is called a “reduction”.  A reduction is a replacement of a 
sequence of symbols corresponding to the right hand side of a rule by the left hand side of the rule. 
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For example, suppose we start with the sequence α β γ, and we have a rule A → β, where α, β, γ ∈ 
(N∪Σ)*.  Then we can reduce α β γ to the sequence of symbols α A γ.  We express this by the 
notation α β γ <= α A γ. (It is conventional to use lower case Greek letters for sequences of 
symbols.).  
Similarly, we can perform an “expansion” if we do the replacement in the reverse direction, and 
replace a nonterminal corresponding to the left hand side of a rule by the symbols on the right hand 
side of the rule. 
For example, suppose we start with the sequence α A γ, and we have a rule A → β, where α, β, γ ∈ 
(N∪Σ)*.  Then we can expand α A γ to the sequence of symbols α β γ.  We express this by the 
notation α A γ => α β γ. 

A program corresponds to input that can be matched to the start symbol (often something like 
“Program”, “StatementList” or “ExternalDeclarationSequence”).  If we perform the matching by 
starting with the input, and performing reductions, until we end up with the start symbol, then we 
are performing bottom up parsing. If we perform the matching by starting with the start symbol, and 
performing expansions, until we end up with the input, then we are performing top down parsing. 
For example, if we have the above rules, the following input is a legal statement  
{ 
a;  
if ( a ) { 
 a; 
 a; 
 } 
else 
 a; 
} 
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This is because we can reduce this to S by the following sequence of reductions 
  { a ; if ( a ) { a ; a ; } else a ; } 
   Reduce by SS → ε 
 <= { SS a ; if ( a ) { a ; a ; } else a ; } 
   Reduce by E → IDENT 
 <= { SS E ; if ( a ) { a ; a ; } else a ; } 
   Reduce by S → E ; 
 <= { SS S if ( a ) { a ; a ; } else a ; } 
   Reduce by SS → SS S 
 <= { SS if ( a ) { a ; a ; } else a ; } 
   Reduce by E → IDENT 
 <= { SS if ( E ) { a ; a ; } else a ; } 
   Reduce by SS → ε 
 <= { SS if ( E ) { SS a ; a ; } else a ; } 
   Reduce by E → IDENT 
 <= { SS if ( E ) { SS E ; a ; } else a ; } 
   Reduce by S → E ; 
 <= { SS if ( E ) { SS S a ; } else a ; } 
   Reduce by SS → SS S 
 <= { SS if ( E ) { SS a ; } else a ; } 
   Reduce by E → IDENT 
 <= { SS if ( E ) { SS E ; } else a ; } 
   Reduce by S → E ; 
 <= { SS if ( E ) { SS S } else a ; } 
   Reduce by SS → SS S 
 <= { SS if ( E ) { SS } else a ; } 
   Reduce by S → { SS } 
 <= { SS if ( E ) S else a ; } 
   Reduce by E → IDENT 
 <= { SS if ( E ) S else E ; } 
   Reduce by S → E ; 
 <= { SS if ( E ) S else S } 
   Reduce by S → if ( E ) S else S 
 <= { SS S } 
   Reduce by SS → SS S 
 <= { SS } 
   Reduce by S → { SS } 
 <= S 
   Accept 
The sequence of symbols formed at each stage of the sequence is called a “sentential form”.  (The 
terminology comes from the parsing of natural language, in which we are trying to parse a 
sentence.) 
A parse tree can be built to represent the structure of the program. The root node is the start symbol.  
The internal nodes of the tree correspond to the rules used to reduce the program to the start 
symbol. There are also terminal nodes corresponding to the terminal symbols in the input that have 
attributes.  Essentially we create the parse tree in a bottom up fashion, creating a new node 
whenever we perform a reduction. 
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Example  
{ 
a;  
if ( a ) { 
 a; 
 a; 
 } 
else 
 a; 
} 

generates the parse tree shown below  

S !
{ SS }

S !
if ( E ) S else S

S

S !
E ;

SS !
"

SS !
SS S

E !
IDENT

E !
IDENT

E !
IDENT

E !
IDENT

E !
IDENT

SS !
"

S !
E ;

S !
E ;

S !
E ;

SS !
SS S

SS !
SS S

S !
{ SS }

SS !
SS S
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Sometimes nodes of the parse tree are irrelevant as far as the rest of the compiler is concerned.  For 
example, the code generated for a parenthesised expression is the same as for an unparenthesised 
expression.  The parentheses might have been important when performing parsing, in that they 
determined how operators and operands were grouped, but once the structure of the expression has 
been determined, they can be ignored.  Similarly, nodes corresponding to precedence specifying 
rules, such as E → T, T → F can be discarded. 
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For example, if we have the grammar rules 
E  →  E “+” T | E “-” T | “-” T | T 
T  →  T “*” F | T “/” F | F 
F  →  IDENT | NUMBER | “(” E “)” 

(E means Expression, T means Term, F means Factor). 
Then the expression  ( a + b ) * ( c + d ) - e * f generates the parse tree 

E !
E + T

E !
E - T

F !
IDENT

F !
( E )

E !
T

T !
F

b c d e fa

T !
T * F

E

E !
T

F !
IDENT

F !
IDENT

F !
IDENT

F !
IDENT

F !
IDENT

T !
F

T !
F

T !
F

T !
F

E !
T

E !
E + T

F !
( E )

T !
F

T !
T * F
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but can be simplified to the abstract syntax tree 

PlusNode

MinusNode

IdentNode

b c d e fa

TimesNode

PlusNode

IdentNode IdentNode IdentNode IdentNode IdentNode

TimesNode

 
While it is a bit early to show you a CUP program, perhaps you can see how this is matched by the 
following code.  The Java code enclosed in {:...:} represents the code to build a node of the tree. 
Expr::= 
  Expr:expr PLUS Term:term 
  {: 
  RESULT = new PlusNode( expr, term ); 
  :} 
 | 
  Expr:expr MINUS Term:term 
  {: 
  RESULT = new MinusNode( expr, term ); 
  :} 
 | 
  MINUS Term:term 
  {: 
  RESULT = new NegateNode( term ); 
  :} 
 | 
  Term:term 
  {: 
  RESULT = term; 
  :} 
 ; 
 
Term::= 
  Term:term TIMES Factor:factor 
  {: 
  RESULT = new TimesNode( term, factor ); 
  :} 
 | 
  Term:term DIVIDE Factor:factor 
  {: 
  RESULT = new DivideNode( term, factor ); 
  :} 
 | 
  Factor:factor 
  {: 
  RESULT = factor; 
  :} 
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 ; 
 
Factor::= 
  LEFT Expr:expr RIGHT 
  {: 
  RESULT = expr; 
  :} 
 | 
  NUMBER:value 
  {: 
  RESULT = new NumberNode( Integer.parseInt( value ) ); 
  :} 
 | 
  IDENT:ident 
  {: 
  RESULT = new IdentNode( ident ); 
  :} 
 ; 

Bottom Up (Shift-Reduce) Parsing  
To perform a bottom up or shift-reduce parse, we use a stack of terminal and nonterminal symbols. 
We process the input from left to right.  At each stage, the stack corresponds to the terminal 
symbols and constructs processed so far.  The stack, concatenated with the remaining input yet to 
be processed, constitute a sentential form.  Initially the stack contains just a “bottom of stack” 
marker, “$”. The stack is considered to grow from left to right.  
We shift the input onto the stack, until we have a complete right hand side of a rule on the top of the 
stack. Whenever a complete right hand side of a rule appears on the top of the stack, we reduce it to 
its left hand side (i.e., replace it by the left hand side of the rule). We terminate when we shift the 
end of file marker (also represented by “$”) onto the stack and the stack contains 
“$ StartSymbol $”. 
The decision on whether to shift or reduce, and if to reduce, which rule to reduce by, is made on the 
basis of the top portion of the stack, and the current token. The exact algorithm for making this 
decision varies for different forms of bottom up parsing, and the decision making is not trivial.  A 
program called a parser generator is normally used to generate tables used to drive the parser. 
The algorithm for bottom up parsing is shown below. 
Make the stack “$”; 

GetToken(); 

forever 
 { 
 if ( Stack is “$ StartSymbol $” ) 
  return; 
 else if ( Stack and CurrToken imply  
  have partial righthand side of rule on top of stack ) 
  Shift CurrToken onto stack; 
  GetToken(); 
  } 
 else if ( Stack and CurrToken imply  
  have complete righthand side of rule on top of stack ) 
  Replace righthand side of rule on top of stack by lefthand side; 
 else 
  error(); 
 } 
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Example  
Consider the grammar  

E  →  E “+” T | E “-” T | “-” T | T 
T  →  T “*” F | T “/” F | F 
F  →  IDENT | NUMBER | “(” E “)” 

and the input  
 a + b + c * d,  
where  a, b, c, d are all considered as identifiers. We can reduce the input to the start symbol E by 

  a + b + c * d  
   Reduce F → IDENT 
 <= F + b + c * d 
   Reduce T → F 
 <= T + b + c * d  
   Reduce E → T 
 <= E + b + c * d  
   Reduce F → IDENT 
 <= E + F + c * d  
   Reduce T → F 
 <= E + T + c * d  
   Reduce E → E + T 
 <= E + c * d  
   Reduce F → IDENT 
 <= E + F * d  
   Reduce T → F 
 <= E + T * d  
   Reduce F → IDENT 
 <= E + T * F  
   Reduce T → T * F 
 <= E + T  
   Reduce E → E + T 
 <= E  
   Accept 
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The bottom up parse of the input is shown below.  $ represents both bottom of stack and end of 
input. 

Stack Input Remaining Action  
---->grows 

$ a + b + c * d $ Shift IDENT 
$ Id  + b + c * d $ Reduce F → IDENT 
$ F  + b + c * d $ Reduce T → F  
$ T  + b + c * d $ Reduce E → T  
$ E  + b + c * d $ Shift +  
$ E +  b + c * d $ Shift IDENT 
$ E + Id  + c * d $ Reduce F → IDENT 
$ E + F  + c * d $ Reduce T → F  
$ E + T  + c * d $ Reduce E → E + T  
$ E  + c * d $ Shift +  
$ E +  c * d $ Shift IDENT 
$ E + Id  * d $ Reduce F → IDENT 
$ E + F  * d $ Reduce T → F  
$ E + T  * d $ Shift *  
$ E + T *  d $ Shift IDENT 
$ E + T * Id  $ Reduce F → IDENT 
$ E + T * F  $ Reduce T → T * F  
$ E + T  $ Reduce E → E + T  
$ E  $ Shift $ 
$ E $  Accept  
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LALR(1) Parsing 
In many forms of bottom up parsing, we place “states” on the stack, rather than terminal and 
nonterminal symbols. A state indicates all the possible rules we may be in the process of analysing, 
where we are up to in our analysis, and perhaps the possible terminal symbols that can follow the 
application of the rule. A state summarises all the information in the stack that is relevant in 
deciding whether to shift or reduce, and if to reduce, which rule to reduce by.  While states are 
complicated objects, there are only a finite number of possible states, and these states can be 
precomputed by the parser generator, and referred to by number, when parsing is performed. 
An action table is created to indicate the action to perform for a given state and input token.  The 
action table is a mapping indexed by the top of stack state and current token.  It returns a value of 
the form: 
• SHIFT State 
• REDUCE Rule 
• ACCEPT 
• ERROR 
There is also a goto table created to indicate the state to push on when a reduction is performed. The 
goto table is a mapping indexed by the top of stack state uncovered after removal of the states 
corresponding to the right hand side of the rule, and the nonterminal corresponding to the left hand 
side to be pushed onto the stack.  It returns the new state to be pushed onto the stack. 
These tables are used to drive the parser. This form of bottom up parsing is called LR parsing. The 
parsing algorithm is shown below. 
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Start with a stack of the form 
 state 0 
 --->grows 
where state 0 corresponds to having seen no input; 

GetToken(); 

forever { 
 /* 
 Index the action table by 
  the top of stack state  
  and the current token 
 to get the action to perform 
 */ 
 CurrAction =  Action[ TopStack(), CurrToken ]; 
 switch ( CurrAction.ActionSort ) { 
  case SHIFT: 
   /* 
   Push the indicated state onto the stack 
   */ 
   Push( CurrAction.ShiftState ); 
   /* 
   Get the next token 
   */ 
   GetToken(); 
   break; 
  case REDUCE: 
   Perform code associated with CurrAction.ReduceRule 
    (e.g., build node of tree corresponding to  
    the grammar rule); 
   /* 
   Pop the states corresponding to  
    the righthand side of the rule  
    off the stack 
   */ 
   Pop CurrentAction.ReduceRule.RHS.length() 
    states off the stack; 
   /* 
   Index the goto table by  
    the state uncovered on the top of stack 
    and the nonterminal corresponding to  
     the lefthand side of the rule 
   and push the state found in the goto table 
    onto the stack; 
   */ 
   Push( GoTo[ TopStack(), 
    CurrentAction.ReduceRule.LHS ] ); 
   break; 
  case ACCEPT: 
   /* 
   Complete parsing 
   */ 
   return; 
  case ERROR: 
   /* 
   Generate an error message 
   */ 
   error(); 
   break; 
  } 
 } 
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Example 
Consider the grammar  
StmtList → 

  ε 
 | 
  StmtList Stmt “\n” 
 | 
  StmtList error “\n” 
 | 
  StmtList “\n” 
 
Stmt → 
  IDENT “=” Expr 
 | 
  Expr 
 
Expr → 
  Expr “+” Term 
 | 
  Expr “-” Term 
 | 
  “-” Term 
 | 
  Term 
 
Term → 
  Term “*” Factor 
 | 
  Term “/” Factor 
 | 
  Factor 
 
Factor → 
  “(” Expr “)” 
 | 
  NUMBER 
 | 
  IDENT 
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This grammar generates the LALR(1) action table shown below. 
State Meaning  State $ err ( ) \n + - * / = Num Id 

 0 r1 r1 r1  r1  r1    r1 r1 
StmtList 1 s11 s12 s8  s4  s9    s2 s3 
Number 2    r15 r15 r15 r15 r15 r15    

Ident 3     r16 r16 r16 r16 r16 s27   
StmtList \n 4 r4 r4 r4  r4  r4    r4 r4 

Expr 5     r6 s23 s22      
Factor 6    r13 r13 r13 r13 r13 r13    
Term 7    r10 r10 r10 r10 s17 s18    

( 8   s8    s9    s2 s15 
- 9   s8        s2 s15 

StmtList Stmt 10     s14        
$ StmtList $ 11 Acc            

StmtList error 12     s13        
StmtList error \n 13 r3 r3 r3  r3  r3    r3 r3 
StmtList Stmt \n 14 r2 r2 r2  r2  r2    r2 r2 

Ident 15    r16 r16 r16 r16 r16 r16    
- Term 16    r9 r9 r9 r9 s17 s18    
Term * 17   s8        s2 s15 
Term / 18   s8        s2 s15 

Term / Factor 19    r12 r12 r12 r12 r12 r12    
Term * Factor 20    r11 r11 r11 r11 r11 r11    

( Expr 21    s24  s23 s22      
Expr - 22   s8        s2 s15 
Expr + 23   s8        s2 s15 

( Expr ) 24    r14 r14 r14 r14 r14 r14    
Expr + Term 25    r7 r7 r7 r7 s17 s18    
Expr - Term 26    r8 r8 r8 r8 s17 s18    

Ident = 27   s8    s9    s2 s15 
Ident = Expr 28     r5 s23 s22      

sn means shift state n, rn means reduce by rule n.  Acc means accept, and a blank means an error. $ 
is used to represent the end of text. 
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This grammar generates the LALR(1) goto table shown below.  
State StmL Stmt E T F  

0 s1     r1 = StmtList → ε 
1  s10 s5 s7 s6  
2      r15 = Factor → Number 
3      r16 = Factor → Ident 
4      r4 = StmtList → StmtList \n 
5      r6 = Stmt → Expr 
6      r13 = Term → Factor 
7      r10 = Expr → Term 
8   s21 s7 s6  
9    s16 s6  

10       
11       
12       
13      r3 = StmtList → StmtList error \n 
14      r2 = StmtList → StmtList Stmt \n 
15      r16 = Factor → Ident 
16      r9 = Expr → - Term 
17     s20  
18     s19  
19      r12 = Term → Term / Factor 
20      r11 = Term → Term * Factor 
21       
22    s26 s6  
23    s25 s6  
24      r14 = Factor → ( Expr ) 
25      r7 = Expr → Expr + Term 
26      r8 = Expr → Expr - Term 
27   s28 s7 s6  
28      r5 = Stmt → Ident = Expr 

sn means shift state n. 
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A state summarises all the relevant information for determining the action, that can be gleaned from 
the (conventional) stack of symbols. For example, state 20 represents a stack of the form “... Term * 
Factor”, for which we know that we should reduce “Term * Factor” to “Term”.  State 25 represents 
a stack of the form “...Expr + Term”, for which we should reduce “Expr + Term” to “Expr” if the 
current token is not a higher precedence operator, such as “*” or “/”.  If the current token is “*” or 
“/”, we should shift, rather than reduce. 
Using the table, we can perform a bottom up parse of the input 
 a + b + c * d \n 

where we assume that a, b, c, d are all tokenised to IDENT by the lexical analyser. This is 
illustrated below. 

Stack Input Action 

$0 Id a Reduce StmtList → ε 

$0 SL1  Shift Id3 
$0 SL1 Id3 + Reduce F → Ident 

$0 SL1 F6  Reduce T → F 
$0 SL1 T7  Reduce E → T 
$0 SL1 E5  Shift +23 
$0 SL1 E5 +23 Id b Shift Id15 

$0 SL1 E5 +23 Id15 + Reduce F → Ident 
$0 SL1 E5 +23 F6  Reduce T → F 
$0 SL1 E5 +23 T25  Reduce E → E + T 
$0 SL1 E5  Shift +23 

$0 SL1 E5 +23 Id c Shift Id15 
$0 SL1 E5 +23 Id15 * Reduce F → Ident 
$0 SL1 E5 +23 F6  Reduce T → F 
$0 SL1 E5 +23 T25  Shift *17 

$0 SL1 E5 +23 T25 *17 Id d Shift Id15 
$0 SL1 E5 +23 T25 *17 Id15 \n Reduce F → Ident 
$0 SL1 E5 +23 T25 *17 F20  Reduce T → T * F 
$0 SL1 E5 +23 T25  Reduce E → E + T 

$0 SL1 E5  Reduce S → E 
$0 SL1 S10  Shift \n14 
$0 SL1 S10 \n14 $ Reduce StmtList → StmtList Stmt \n 
$0 SL1  Shift $11 

$0 SL1 $11  Accept 
 

Terminal and nonterminal symbols have been appended to the states, to indicate the top of stack 
symbol that they would conventionally correspond to. In practice, only the states appear on the 
stack, but these symbols have been added for readablity. 
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Consider another example 
 a * ( - b ) \n 

Stack Input Action 

$0 Id a Reduce StmtList → ε 

$0 SL1  Shift Id3 

$0 SL1 Id3 * Reduce F → Ident 
$0 SL1 F6  Reduce T → F 
$0 SL1 T7  Shift *17 
$0 SL1 T7 *17 ( Shift (8 

$0 SL1 T7 *17 (8 - Shift -9 
$0 SL1 T7 *17 (8 -9 Id b Shift Id15 
$0 SL1 T7 *17 (8 -9 Id15 ) Reduce F → Ident 

$0 SL1 T7 *17 (8 -9 F6  Reduce T → F 

$0 SL1 T7 *17 (8 -9 T16  Reduce E → -T 

$0 SL1 T7 *17 (8 E21  Shift )24 
$0 SL1 T7 *17 (8 E21 )24 \n Reduce F → ( E ) 
$0 SL1 T7 *17 F20  Reduce T → T * F 
$0 SL1 T7  Reduce E → T 

$0 SL1 E5  Reduce S → E 
$0 SL1 S10  Shift \n14 
$0 SL1 S10 \n14 $ Reduce StmtList → StmtList Stmt \n 
$0 SL1  Shift $11 

$0 SL1 $11  Accept 
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A bottom up parse of the invalid input 
 - a * b + c * - d \n 
is shown below. 

Stack Input Action 
$0 - Reduce StmtList → ε 

$0 SL1  Shift -9 
$0 SL1 -9 Id a Shift Id15 
$0 SL1 -9 Id15 * Reduce F → Ident 

$0 SL1 -9 F6  Reduce T → F 
$0 SL1 -9 T16  Shift *17 
$0 SL1 -9 T16 *17 Id b Shift Id15 
$0 SL1 -9 T16 *17 Id15 + Reduce F → Ident 
$0 SL1 -9 T16 *17 F20  Reduce T → T * F 

$0 SL1 -9 T16  Reduce E → - T 
$0 SL1 E5  Shift +23 
$0 SL1 E5 +23 Id c Shift Id15 
$0 SL1 E5 +23 Id15 * Reduce F → Ident 

$0 SL1 E5 +23 F6  Reduce T → F 
$0 SL1 E5 +23 T25  Shift *17 
$0 SL1 E5 +23 T25 *17 - Error (Cannot parse due to invalid input). 

The derivation of the action and goto tables is nontrivial. It should nevertheless be obvious that, 
given the tables, it is a simple matter to perform a bottom up parse of the input. 

States 
A state corresponds to a set of “items”. 
An item is a rule we may be in the process of analysing, together with an indication of where 
we are up to in analysing the rule (represented by a “.” inserted in the right hand side of the 
rule), and an indication of the tokens that could follow the construct corresponding to the 
rule. 
For example, we could have the item 
Rule with “.” Follow symbols 
Term → Term . * Factor ) \n + - * / 

Since there are only a finite number of possible rules, possible places in the rule, and possible 
follow symbols, there are only a finite number of possible items, and hence only a finite number of 
possible states. Thus it is possible to identify each state with a number. 
There is a mapping from conventional stacks (in other words, sequences of symbols) to states.  
Stacks that can actually occur (what are called “viable prefixes” of “right sentential forms”) map to 
nonempty states, while impossible stacks map to the empty set (which is not regarded as a state). 
• The state corresponding to a stack is intended to summarise all important information 

on the stack, about rules we might be in the process of analysing, necessary for deciding 
what action to perform. 

• There is a state (State 0) that corresponds to an empty stack. 
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• The state corresponding to a stack α X can be computed from the state corresponding to 
α , and the symbol X.  

• The function that performs this mapping is called the goto function. 
• If Q is the state corresponding to stack α, then goto( Q, X ) is the state corresponding to 

the stack α  X. 
• We can generate the state corresponding to X1 X2 … Xn by computing  

  Q1 = goto( State 0, X1 ), Q2 = goto( Q1, X2 ), … Qn = goto( Qn-1, Xn ). 

It turns out to be convenient to augment our grammar, by adding an extra rule.  Suppose S is the 
start symbol.  CUP adds another rule S’ → $ S $, where $ represents the beginning and end of 
input.  (Other parser generators add a rule S’ → S instead, and there are minor differences with 
regard to the point at which the parse is accepted). 
State 0, the state corresponding to the empty stack, is generated by taking the “closure” of the 
set { [ S’ →  $ . S $, {} ] }.  This represents having processed nothing, and expecting to process S, 
followed by end of input. 
Goto( Q, X ) is the state formed by taking the “closure” of 
{ [ A →  α X . β , F ] for which [ A →  α . X β , F ] ∈ Q }. 
(If [ A → α . X β, F ] was possible before processing X, then [ A → α X . β, F ] must be possible 
after processing X.)  
How do we take the closure of a set of items Q? 
If there is already an item of the form [ A →  α . B β , F ] in Q, and there is a rule of the form 
B →  γ: 
• If β  is present, add [ B →  .γ , first( β  ) ] to Q.  (These follow symbols are said to be 

spontaneously generated from the item [ A →  α . B β, F ]).  
• If β  is nullable (is not present, or can expand to nothing), add [ B →  .γ , F ] to Q.  (These 

follow symbols are said to propagate from the item [ A → α . B β, F ]). 

We continue to do this until a complete pass through the items in Q adds no more items to Q.   
(Because if the item [ A → α . B β, F ] is possible, we might be starting the construct B, and hence 
we might be starting γ.  Thus taking the closure amounts to adding in the additional items that must 
be possible, as a consequence of the existing items.) 
• To generate all possible states, we can start with state 0, and keep processing states, 

generating goto( Q, X ) for all states Q and symbols X, until a complete pass through the 
set of states generates no new states. 

The set of items in a state that have symbols to the left of the “.” is called the kernel set of items of 
the state.  This is effectively what you get by taking the goto of another state (selecting states to 
process, and shifting the “.” over the symbol X), but not taking the closure.  The full set of items 
can be derived from the kernel set.  This used to be important in the days of machines with 64KB of 
memory.  It meant that the states could be stored more concisely. 
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LALR(1) and LR(1) states 
There are variations of the above algorithm, that generate different states, and hence different 
parsing tables.  These include LALR(1) and LR(1) systems of bottom up parsing. (LR = Process 
from the Left, producing a Right parse. LALR = LookAhead LR. The parameter indicates the 
number of tokens of lookahead.). 
The core of a state is the set of items, after discarding the follow symbols. 
• With what is called LR(1) parsing, states are considered to be the same if the items are 

the same, taking into account any differences in the follow symbols. 
• With what is called LALR(1) parsing, states are considered to be the same if the items 

are the same, ignoring any differences in the follow symbols.  We compute the states as 
for LR(1) parsing, but merge states that have the same “core”.  

• There is a many to 1 mapping from LR(1) states to LALR(1) states.  An LALR(1) state 
is formed by merging LR(1) states with the same “core”. 

Generation of the parsing tables 
Sometimes we have a grammar that is not parsable by a particular system.  Usually this is because 
the grammar is in fact ambiguous (there is more than one way of parsing the input).  However, the 
reason could be more subtle than this.  It could be that we have to look more than one token beyond 
the end of the rule to determine the rule to apply.  In this case the grammar is not LR(1).  If a 
grammar is LR(1), but not LALR(1), then the LALR(1) state does not summarise enough 
information about the stack to permit us to make the appropriate decision. 
The action and goto tables are derived from the states. 
Action( State Q, Terminal x ) = 
• Shift goto( Q, x ), if there is an item of the form [ A →  β  . x γ , F ] ∈  Q.  Under these 

circumstances, goto( Q, x ) will be nonempty. 
• Reduce by Rule A → β, if the item [A → β . , F ] ∈ Q, and x ∈ F. 
• Accept, if the item [ S’ →  $ S $ . , {} ] ∈ Q and x = $, the end of text symbol. 
• Error, otherwise. 
GoTo( State Q, Nonterminal B ) = 
• Shift goto( Q, B ), if there is an item of the form [ A → α  . B β , F ] ∈  Q.  Under these 

circumstances, goto( Q, B ) will be nonempty. 
• Error, otherwise. 
If a grammar is not parsable, then the action table has conflicts (i.e., more than one 
alternative action for a given state and terminal symbol).  There are two kinds of conflicts - 
shift/reduce and reduce/reduce conflicts. 
• A shift/reduce conflict occurs for a state Q and current token x, if there is both an item 

of the form [A →  β1 . x γ , F1 ] ∈  Q and an item of the form [B →  β2 . , F2 ] ∈  Q, where 
x ∈  F2. 

• A reduce/reduce conflict occurs for a state Q and current token x, if there is both an 
item of the form [A →  β1 . , F1 ] ∈ Q, where x ∈  F1 and an item of the form [B →  β2 . , 
F2 ] ∈ Q, where x ∈ F2. 
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(One of β1 and β2 will be a suffix of the other.) 

• In terms of power (ability to parse more grammars, and detect errors sooner), LALR(1) 
is less powerful than LR(1). 

• More powerful parsing techniques have fewer non-error entries than less powerful 
techniques.  Thus a more powerful technique detects an error in the input sooner. 

We must then make some decision on how to resolve the conflict (i.e. prefer one action over 
another), or use a more powerful method that does not generate conflicts. 
Usually reduce/reduce conflicts represent a major error in the design of the grammar, and cannot be 
resolved.  Shift/reduce conflicts are relatively common, and often relate to operator precedence or 
processing nested “if” statements with a single “else”.  The shift/reduce conflict for nested if 
statements is usually resolved by preferring the shift over the reduction.  For operators, we have to 
take into account the precedence of the operators. 
When parsing with tables generated by a less powerful method, we may perform more 
reductions before detecting an error, than we would with a more powerful method. However, 
no matter what method is used for generating the tables, we never perform a shift when the 
current token is in error. 
The LR(1) method produces more states than the other methods. There is a many to one 
mapping of LR(1) states onto LALR(1) states.  (For typical computer languages, there are 
hundreds of LALR(1) states, and thousands of LR(1) states.  Each LALR(1) state for expressions 
splits into multiple LR(1) states, with one for each terminal that can follow the expression.  For 
example, in Pascal “while Expr” will be followed by “do”, and “if Expr” by “then”.  The LALR(1) 
states corresponding to having shifted “while Expr <” and “if Expr <” are the same (the closure of 
the item [Expr → Expr < . Expr]), but the LR(1) states are different.)  An LALR(1) state is the 
union of all LR(1) states with the same “core” - the state formed from an LR(1) state by stripping 
the follow symbols from the component items. 
LALR(1) parsing has less theoretical justification than LR(1) parsing, but LALR(1) parsing has an 
advantages in terms of the number of states, while having the decision making power of LR(1) 
parsing, for almost all practical grammars. 
The LALR(1) state summarises all the information that is relevant in deciding whether to shift or 
reduce, and if to reduce, which rule to reduce by, given only 1 token lookahead and the possible 
rules we might be processing as information when making a decision. The LALR(1) parser detects 
an error at the first possible occasion given only the potential rules, and the current token, as 
information. 
There is also a method of parsing called SLR(1) (Simple LR(1)) parsing.  In this method of parsing, 
the items in the states do not include the follow symbols.  We use the follow set of the lefthand side 
instead.  SLR(1) parsing is less powerful than LALR(1), but it is easier to compute the tables. 
The actions for an LALR(1) state with a given token, are essentially just equal to the merged 
actions of the component LR(1) states. If there is a conflict for an LR(1) state, then that 
conflict also occurs for the LALR(1) state it merges into. Any shift action that occurs for an 
LALR(1) state, occurs for all component LR(1) states, while a reduce action will only occur in 
some of the LR(1) states. A consequence of this is that using LR(1) instead of LALR(1), may 
decrease the number of reduce/reduce conflicts, but will not affect the existence of 
shift/reduce conflicts. 
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An Example 
The above grammar, when processed by the CUP parser generator, generates the following 
LALR(1) states.  The “.” on the right hand side of the rule represents where we could be up to in 
parsing.  The list of terminal symbols on the right indicate the symbols that could follow the 
application of the rule.  After the set of items that make up a state, is the goto mapping, for symbols 
for which it is not empty. 
Try and match the table entries to the information in the states. 
For example, in State 17, we have the following information: 
State 17 
Factor → . ( Expr ) ) \n + - * / 
Factor → . IDENT ) \n + - * / 
Factor → . NUMBER ) \n + - * / 
Term → Term * . Factor ) \n + - * / 
( Go to State 8 
Factor Go to State 20 
IDENT Go to State 15 
NUMBER Go to State 2 
So, we shift state 8 if the current token is a “(”, we shift state 15 if the current token is an identifier, 
we shift state 2 if the current token is a number, and if we get state 17 on the top of stack after 
reducing something to a Factor, we shift state 20. 
In State 25, we have the following information: 
State 25 
Expr → Expr + Term . ) \n + - 
Term → Term . * Factor ) \n + - * / 
Term → Term . / Factor ) \n + - * / 
* Go to State 17 
/ Go to State 18 
So, we shift state 17 if the current token is a “*”, shift state 18 if the current token is a “/”, reduce 
by rule “Expr → Expr + Term” if the current token can follow this rule, namely “)”, “\n”, “+”, “-”. 

It is important to be able to “read” the description of the set of states (generated as output by the 
CUP parser generator), when attempting to debug your grammar definition. 
State 0 
$START → $ . StmtList $ $ 
StmtList → . $ error ( \n - NUMBER IDENT 
StmtList → . StmtList error \n $ error ( \n - NUMBER IDENT 
StmtList → . StmtList Stmt \n $ error ( \n - NUMBER IDENT 
StmtList → . StmtList \n $ error ( \n - NUMBER IDENT 
StmtList Go to State 1 

State 1 
$START → $ StmtList . $ $ 
Expr → . - Term \n + - 
Expr → . Expr + Term \n + - 
Expr → . Expr - Term \n + - 
Expr → . Term \n + - 
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Factor → . ( Expr ) \n + - * / 
Factor → . IDENT \n + - * / 
Factor → . NUMBER \n + - * / 
StmtList → StmtList . error \n $ error ( \n - NUMBER IDENT 
StmtList → StmtList . Stmt \n $ error ( \n - NUMBER IDENT 
StmtList → StmtList . \n $ error ( \n - NUMBER IDENT 
Stmt → . Expr \n 
Stmt → . IDENT ASSIGN Expr \n 
Term → . Factor \n + - * / 
Term → . Term * Factor \n + - * / 
Term → . Term / Factor \n + - * / 
- Go to State 9 
NUMBER Go to State 2 
IDENT Go to State 3 
\n Go to State 4 
Expr Go to State 5 
Factor Go to State 6 
Term Go to State 7 
( Go to State 8 
Stmt Go to State 10 
$ Go to State 11 
error Go to State 12 
State 2 
Factor → NUMBER . ) \n + - * / 

State 3 
Factor → IDENT . \n + - * / 
Stmt → IDENT . ASSIGN Expr \n 
ASSIGN Go to State 27 
State 4 
StmtList → StmtList \n . $ error ( \n - NUMBER IDENT 

State 5 
Expr → Expr . + Term \n + - 
Expr → Expr . - Term \n + - 
Stmt → Expr . \n 
+ Go to State 23 
- Go to State 22 
State 6 
Term → Factor . ) \n + - * / 

State 7 
Expr → Term . ) \n + - 
Term → Term . * Factor ) \n + - * / 
Term → Term . / Factor ) \n + - * / 
* Go to State 17 
/ Go to State 18 
State 8 
Expr → . - Term ) + - 
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Expr → . Expr + Term ) + - 
Expr → . Expr - Term ) + - 
Expr → . Term ) + - 
Factor → ( . Expr ) ) \n + - * / 
Factor → . ( Expr ) ) + - * / 
Factor → . IDENT ) + - * / 
Factor → . NUMBER ) + - * / 
Term → . Factor ) + - * / 
Term → . Term * Factor ) + - * / 
Term → . Term / Factor ) + - * / 
( Go to State 8 
- Go to State 9 
Expr Go to State 21 
Factor Go to State 6 
IDENT Go to State 15 
NUMBER Go to State 2 
Term Go to State 7 
State 9 
Expr → - . Term ) \n + - 
Factor → . ( Expr ) ) \n + - * / 
Factor → . IDENT ) \n + - * / 
Factor → . NUMBER ) \n + - * / 
Term → . Factor ) \n + - * / 
Term → . Term * Factor ) \n + - * / 
Term → . Term / Factor ) \n + - * / 
( Go to State 8 
Factor Go to State 6 
IDENT Go to State 15 
NUMBER Go to State 2 
Term Go to State 16 
State 10 
StmtList → StmtList Stmt . \n $ error ( \n - NUMBER IDENT 
\n Go to State 14 

State 11 
$START → $ StmtList $ . $ 

State 12 
StmtList → StmtList error . \n $ error ( \n - NUMBER IDENT 
\n Go to State 13 

State 13 
StmtList → StmtList error \n . $ error ( \n - NUMBER IDENT 

State 14 
StmtList → StmtList Stmt \n . $ error ( \n - NUMBER IDENT 

State 15 
Factor → IDENT . ) \n + - * / 

State 16 
Expr → - Term . ) \n + - 
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Term → Term . * Factor ) \n + - * / 
Term → Term . / Factor ) \n + - * / 
* Go to State 17 
/ Go to State 18 
State 17 
Factor → . ( Expr ) ) \n + - * / 
Factor → . IDENT ) \n + - * / 
Factor → . NUMBER ) \n + - * / 
Term → Term * . Factor ) \n + - * / 
( Go to State 8 
Factor Go to State 20 
IDENT Go to State 15 
NUMBER Go to State 2 
State 18 
Factor → . ( Expr ) ) \n + - * / 
Factor → . IDENT ) \n + - * / 
Factor → . NUMBER ) \n + - * / 
Term → Term / . Factor ) \n + - * / 
( Go to State 8 
Factor Go to State 19 
IDENT Go to State 15 
NUMBER Go to State 2 
State 19 
Term → Term / Factor . ) \n + - * / 

State 20 
Term → Term * Factor . ) \n + - * / 

State 21 
Expr → Expr . + Term ) + - 
Expr → Expr . - Term ) + - 
Factor → ( Expr . ) ) \n + - * / 
) Go to State 24 
+ Go to State 23 
- Go to State 22 

State 22 
Expr → Expr - . Term ) \n + - 
Factor → . ( Expr ) ) \n + - * / 
Factor → . IDENT ) \n + - * / 
Factor → . NUMBER ) \n + - * / 
Term → . Factor ) \n + - * / 
Term → . Term * Factor ) \n + - * / 
Term → . Term / Factor ) \n + - * / 
( Go to State 8 
Factor Go to State 6 
IDENT Go to State 15 
NUMBER Go to State 2 
Term Go to State 26 
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State 23 
Expr → Expr + . Term ) \n + - 
Factor → . ( Expr ) ) \n + - * / 
Factor → . IDENT ) \n + - * / 
Factor → . NUMBER ) \n + - * / 
Term → . Factor ) \n + - * / 
Term → . Term * Factor ) \n + - * / 
Term → . Term / Factor ) \n + - * / 
( Go to State 8 
Factor Go to State 6 
IDENT Go to State 15 
NUMBER Go to State 2 
Term Go to State 25 
State 24 
Factor → ( Expr ) . ) \n + - * / 

State 25 
Expr → Expr + Term . ) \n + - 
Term → Term . * Factor ) \n + - * / 
Term → Term . / Factor ) \n + - * / 
* Go to State 17 
/ Go to State 18 
State 26 
Expr → Expr - Term . ) \n + - 
Term → Term . * Factor ) \n + - * / 
Term → Term . / Factor ) \n + - * / 
* Go to State 17 
/ Go to State 18 
State 27 
Expr → . - Term \n + - 
Expr → . Expr + Term \n + - 
Expr → . Expr - Term \n + - 
Expr → . Term \n + - 
Factor → . ( Expr ) \n + - * / 
Factor → . IDENT \n + - * / 
Factor → . NUMBER \n + - * / 
Stmt → IDENT ASSIGN . Expr \n 
Term → . Factor \n + - * / 
Term → . Term * Factor \n + - * / 
Term → . Term / Factor \n + - * / 
( Go to State 8 
- Go to State 9 
Expr Go to State 28 
Factor Go to State 6 
IDENT Go to State 15 
NUMBER Go to State 2 
Term Go to State 7 



Chapter 2 Context Free Grammars Page 27 of 27 

State 28 
Expr → Expr . + Term \n + - 
Expr → Expr . - Term \n + - 
Stmt → IDENT ASSIGN Expr . \n 
+ Go to State 23 
- Go to State 22 
 


