
Chapter 13 A Brief Comparison with Java Page 1 of 11

Chapter 13 A Brief Comparison with Java
Some Java features
Java has many features that my simple B-- language does not have.
For example:
• Java has automatic garbage collection, which makes it a much better language than C or B--.

There is a price paid in terms of efficiency, but it is well worth paying given the gains in
programmer productivity.

• Java supports the notion of packages, for grouping classes, access control (public, protected,
private, package access), and overloading. These features make the lookup of the compile-
time environment more complex. However, they generate no additional run-time costs.

• Java has a notion of a base class (Object), that all classes extend. It also has the notion of the
class Class, used to represent information about class types, and help in run-time actions
related to casts and the instanceof operator.

• Java has static fields and methods. Static fields are not a part of an object, and static methods
do not occur in the method table. A reasonable implementation might make them part of the
instance of the class Class corresponding to a class type.

• The Object class has a toString() method, that is used to convert an object to a String (for
example when performing concatenation or printing), and a getClass() method to let the
programmer determine the run-time class of the object. There are many other methods in the
Object class, and many classes in the API have hundreds of methods, so method tables can be
quite large.

• Java has interface types. Find out what the equivalent is in C++, and you will see why we
don’t teach C++ in elementary courses.

• Pointers are implicit in Java. All array, class and interface variables are actually pointers to
objects. We need to explicitly allocate space for each object using a constructor. The size of
an array is not part of the type of the array, but is specified as a parameter to the constructor.

• There is no “&” (address of) operator in Java, so it is not possible to point to variables. There
is no equivalent of var parameters. However, we can pass the address of an object or array to
a method, and modify the components of the object or array.

• Java has constructors to initialise a class. A constructor for a class always invokes the
constructor for the superclass, before performing its own initialisation. The superclass
constructor can be indicated explicitly, but if there is no explicit indication, the default
constructor with no parameters is invoked.

• At run time, Java initialises classes in a lazy fashion. Static variables are only initialised
when the class is first referred to. In fact, even the loading of a class can be lazy.

Overloading
In modern languages such as Java, the requirement for an identifier to be used for at most one
declaration in a block is relaxed. We can overload a name (have more than one declaration with
the same identifier in the same block). However, there is still a requirement that no two
declarations in the same block have exactly the same signature. There is no point in allowing
multiple declarations with the same signature, because one of them would hide the others.

Chapter 13 A Brief Comparison with Java Page 2 of 11

To cope with overloading, when we search an environment, we specify a signature the declaration
must satisfy. The signature depends on the construct we are processing.
• It is usually possible to tell from the syntactic context whether the identifier should

correspond to a type, variable, or method, so we can permit overloading of identifiers in
different categories. However, there is an ambiguity for member selection, since the left
operand can be either a class name (for a static member), or variable name (for an instance
member). Java prefers variable names over class names, but this is a design flaw in the
language. Overloading between class and variable names should not be permitted.

• Method names can be overloaded. When determining the meaning of an identifier, we take
into account the number and types of the actual parameters.

 An invocation matches a declaration if the number of formal and actual parameters agree, and
each actual parameter can be “widened” to the type of the formal parameter. “Widening”
means performing a type conversion of a value from a subtype to a supertype, or from a more
limited primitive type to a more encompassing primitive type (e.g., char → int, int → double).

Out of all the matches, we choose the match that involves the fewest implicit widenings of actual
parameters to formal parameters.
Sometimes there is no unique closest match. We then generate an error message.
For example, there could be two applicable declarations
 double plus(int, double);
 double plus(double, int);

Both match plus(3, 4), but neither is a closer match than the other.
An important point to note is that the matching of an invocation to a signature is done at
compile time, and depends only on the declared type of variables, not the runtime values. In
general, the compiler cannot determine the type of a run-time value. Code needs to be generated for
a class without any knowledge of whether a programmer might later extend the class to form a
subclass.
Overloading is a simple convenience to allow the programmer to declare multiple methods with the
same name but different signature. It has no relationship with overriding of methods. It adds
complexity to name lookup in the compile-time environment, but makes no difference to what
happens at run time.
For example, suppose we have a method
class A {
 int f(double x) { … }
 }
class B extends A {
 int f(int x) { … }
 }
A a = new B();
a.f(3);

Then the invocation
 a.f(3);

matches the declaration
 int f(double x) { … }

in the declared type A of “a”, not the declaration in B, in the actual type of “a”.

Chapter 13 A Brief Comparison with Java Page 3 of 11

Access control
When searching an environment, many languages also take into account access control (whether the
declaration has public, protected, private or package access). The search method has an additional
parameter corresponding to a set of acceptable access rights.
In Java
• When attempting to determine the meaning of a simple identifier, we start by searching the

environment with all access flags set.
• When attempting to determine the meaning of an identifier when processing member

selection, we first determine the class for the object being selected. We always permit public
access. If this object is in the same package, we permit package access. If the object is in a
superclass, we permit protected access. If the object is of the same type as the current class,
we permit private access.

• When searching an environment, we only match declarations for which the access is
permitted.

• When searching the enclosing environment, we search with the same access flags set.
• When searching the environment of the superclass, we clear the flag for private access. We

also clear the flag for package access if the superclass is in a different package.

The class Class
The class Object has a getClass() method, that returns an instance of the class Class, representing
the run-time type of the object. The Object class (and hence every object) probably has a private
field, that refers to the appropriate instance of the class Class. Given that we have a reference to
the instance of the class Class, we could eliminate the reference to the method table, because the
instance of the class Class probably contains the method table. However, this would increase the
level of indirection involved in access to the method table.
The class Class representing a class type probably contains fields for
• The name of the class type.
• A reference to the static field table and method table for the class type.
• A reference to the instance method table for the class type.
• The code for the class type, including the code for static and instance initialisation, and for

constructors and methods.
• A reference to the instance of the class Class for the superclass of the class type. This

information is used to implement casts involving narrowing, and the instanceof operator.
• References to the instances of the class Class corresponding to the classes referred to by the

class type. The code for this class accesses the other classes through these references. It is
discovers a null reference, it can make a request to the class loader to load the class referred
to, and initialise it.

• Information about the types and names of all fields, methods, etc, declared in the class type.
This information is used for “reflection”.

Order of initialisation
We can find out a lot about the implementation of a language by doing little experiments.

Chapter 13 A Brief Comparison with Java Page 4 of 11

The program
class A {
 static int classInitA() {
 System.out.println("Init A static fields");
 return 0;
 }
 static int y = classInitA();
 int initA() {
 System.out.println("Init A instance fields");
 return 0;
 }
 int x = initA();
 A() {
 System.out.println("Init A default constructor");
 }
 }

class B extends A {
 static int classInitB() {
 System.out.println("Init B static fields");
 return 0;
 }
 static int y = classInitB();
 int initB() {
 System.out.println("Init B instance fields");
 return 0;
 }
 int x = initB();
 B() {
 System.out.println("Init B default constructor");
 }
 B(int x) {
 System.out.println("Init invoked B constructor");
 }
 }

class Main {
 static int classInitMain() {
 System.out.println("Init Main static fields");
 return 0;
 }
 static int y = classInitMain();
 public static void main(String[] arg) {
 System.out.println("Invoke main");
 B b = new B(3);
 }
 }

generates the output
Init Main static fields
Invoke main
Init A static fields
Init B static fields
Init A instance fields
Init A default constructor
Init B instance fields
Init invoked B constructor

So we can see that
• Before a field, method, or constructor of a class can be accessed, we initialise the static fields

of its superclass(es), then the static fields of the class itself.

Chapter 13 A Brief Comparison with Java Page 5 of 11

• To execute a constructor, we first execute the appropriate constructor(s) for the superclass(es),
then initialise the instance fields for the class, then execute the body of the constructor.

Type checking is a compile time action, based on the declared types of variables
The program
class A {
 String f(int x) {
 return "A.f(int " + x + ")";
 }
 }

class B extends A {
 String f(char x) {
 return "B.f(char '" + x + "')";
 }
 String f(int x) {
 return "B.f(int " + x + ")";
 }
 }

class Main {
 public static void main(String[] arg) {
 B b = new B();
 A a = b;
 System.out.println("a.f('c') = " + a.f('c'));
 System.out.println("b.f('c') = " + b.f('c'));
 }
 }

generates the output
a.f('c') = B.f(int 99)
b.f('c') = B.f(char 'c')

So you can see that because the declared type of “a” is “A”, when type checking, the Java compiler
looks in the class “A” to match “f(char)”, and gets a best match of “f(int)”. At run time, the
offset of “f(int)” is used to look up the method table. But the method table used is that of the
actual type, “B”. Now “f(int)” happens to be overridden in “B”. So it finds “B.f(int)”.

Object.getClass()

Object.toString()

Object.equals(Object)

B.f(int)

B.f(char)

MethodsB b

A a
getClass()

toString()

equals(Object)

f(int)

f(char)

class B.class

Methods are overridden, fields are not
The program
class A {
 String x = "A.x";
 String x() {
 return x;
 }
 }

class B extends A {
 String x = "B.x";

Chapter 13 A Brief Comparison with Java Page 6 of 11

 String x() {
 return x;
 }
 }

class Main {
 public static void main(String[] arg) {
 B b = new B();
 A a = b;
 System.out.println("a.x = " + a.x);
 System.out.println("b.x = " + b.x);
 System.out.println("a.x() = " + a.x());
 System.out.println("b.x() = " + b.x());
 }
 }

generates the output
a.x = A.x
b.x = B.x
a.x() = B.x
b.x() = B.x

There are actually two fields called “x”, one from “A”, and one from “B”. However, there is only
one method “x()”. It has the offset of “A.x()” in the method table, but it is the overridden version
“B.x()”. Now “B.x()” was compiled as a part of “B”, and so the reference to “x” inside “B.x()” was
mapped to the offset of “B.x”.

Object.getClass()

Object.toString()

Object.equals(Object)

B.x()

MethodsB b

A a

A.x

B.x

getClass()

toString()

equals(Object)

x()

class B.class

If we delete the declaration of “x()” in “B”, the program
class A {
 String x = "A.x";
 String x() {
 return x;
 }
 }

class B extends A {
 String x = "B.x";
 }

class Main {
 public static void main(String[] arg) {
 B b = new B();
 A a = b;
 System.out.println("a.x = " + a.x);
 System.out.println("b.x = " + b.x);
 System.out.println("a.x() = " + a.x());
 System.out.println("b.x() = " + b.x());
 }
 }

generates the output
a.x = A.x
b.x = B.x
a.x() = A.x

Chapter 13 A Brief Comparison with Java Page 7 of 11

b.x() = A.x

“A.x()” was compiled as a part of “A”, and so the reference to “x” inside “A.x()” was mapped to
the offset of “A.x”.

Object.getClass()

Object.toString()

Object.equals(Object)

A.x()

MethodsB b

A a

A.x

B.x

getClass()

toString()

equals(Object)

x()

class B.class

Private methods are not overridden
If we really look into things, we discover many subtleties. For example, private methods cannot be
overridden.
The program
class A {
 private String f() {
 return "A.f()";
 }
 public String g() {
 return f();
 }
 }

class B extends A {
 public String f() {
 return "B.f()";
 }
 }

class Main {
 public static void main(String[] args) {
 B b = new B();
 System.out.println(b.f());
 System.out.println(b.g());
 }
 }

generates the output
B.f()
A.f()

Why is this? Well, when the method f() is searched for in the extended environment of B, it is not
found, because it is private to the class A, so f() is regarded as not overriding the method f() in B.
So the two versions of f() are given different offsets in the method table. When g() executes, it uses
the offset of the private method in A. It is not that there is special code in the compiler to check
this. It is a simple consequence of the algorithm for checking whether methods are being
overridden. The important point is that it shows that having a good model for how the compiler
works lets us predict what will happen in unusual situations.

Chapter 13 A Brief Comparison with Java Page 8 of 11

Object.getClass()

Object.toString()

Object.equals(Object)

A.f()

A.g()

MethodsB b
getClass()

toString()

equals(Object)

f()

g()

class B.class

B.f()f()

A more complex example
The program
class A {

 public static int q = 100, r = 200;

 public int p = 888;

 public A(int p) { this.p = p; q++; }
 public A() { r++; }

 public String toString() { return "A.toString(): p = " + p; }
 public String e(char c) { return "A.e('" + c + "')"; }
 public String e(double x) { return "A.e(" + x + ")"; }
 }

class B extends A {

 public static int q = 300;

 public int p = 999;

 public B(int p) { this.p = p; q++; }

 public String toString() { return "B.toString(): p = " + p; }
 public String e(int i) { return "B.e(" + i + ")"; }
 public String e(double x) { return "B.e(" + x + ")"; }
 }

Chapter 13 A Brief Comparison with Java Page 9 of 11

class Main {
 public static void main(String[] args) {

 A a1 = new A();
 A a2 = new A(1000);
 B b1 = new B(2000);
 A b2 = b1;

 System.out.println("A.q = " + A.q);
 System.out.println("A.r = " + A.r);
 System.out.println("B.q = " + B.q);
 System.out.println();

 System.out.println("a1.p = " + a1.p);
 System.out.println("a2.p = " + a2.p);
 System.out.println("b1.p = " + b1.p);
 System.out.println("b2.p = " + b2.p);
 System.out.println();

 System.out.println("a1 = " + a1);
 System.out.println("a2 = " + a2);
 System.out.println("b1 = " + b1);
 System.out.println("b2 = " + b2);
 System.out.println();

 // 'A' is ASCII 65
 System.out.println("a1.e('A') = " + a1.e('A'));
 System.out.println("b1.e('A') = " + b1.e('A'));
 System.out.println("b2.e('A') = " + b2.e('A'));
 System.out.println();

 System.out.println("a1.e(65) = " + a1.e(65));
 System.out.println("b1.e(65) = " + b1.e(65));
 System.out.println("b2.e(65) = " + b2.e(65));
 System.out.println();

 System.out.println("a1.e(65.0) = " + a1.e(65.0));
 System.out.println("b1.e(65.0) = " + b1.e(65.0));
 System.out.println("b2.e(65.0) = " + b2.e(65.0));
 System.out.println();

 }
 }

Chapter 13 A Brief Comparison with Java Page 10 of 11

generates the output
A.q = 101
A.r = 202
B.q = 301

a1.p = 888
a2.p = 1000
b1.p = 2000
b2.p = 888

a1 = A.toString(): p = 888
a2 = A.toString(): p = 1000
b1 = B.toString(): p = 2000
b2 = B.toString(): p = 2000

a1.e('A') = A.e('A')
b1.e('A') = A.e('A')
b2.e('A') = A.e('A')

a1.e(65) = A.e(65.0)
b1.e(65) = B.e(65)
b2.e(65) = B.e(65.0)

a1.e(65.0) = A.e(65.0)
b1.e(65.0) = B.e(65.0)
b2.e(65.0) = B.e(65.0)

The two instances of A share the method table for A.
There is only one instance of B, one pointed to by a variable of type B, one of type A.
There is one copy of the static variables for each, and the method tables do not contain static
methods.
The value of A.r is incremented twice, due to the explicit and implicit invocations of new A(). A.q
is incremented in the invocation of new A(int). B.q is incremented in the invocation of new
B(int).
The object of run-time type B has two fields named p, but the one accessed depends on the declared
type of the variable.
The getClass() method is implicitly overridden for each class.
The toString() method is overridden in both A and B, which affects statements such as
 System.out.println("a1 = " + a1);

But the field p accessed by toString() depends on which class toString() is declared in.
An invocation of e(int) when the object is of declared type A invokes e(double), because there is
no e(int) declared in A. But e(double) is overridden in B, so b2.e(int) ends up invoking
B.e(double).

Chapter 13 A Brief Comparison with Java Page 11 of 11

Method table for A

A a1

B b1

A b2

Method Table

888A.p

getClass() Object.getClass()

toString() A.toString()

equals(Object) Object.equals(Object)

Method table for B

getClass()

e(char)

e(double)

e(int)

Object.getClass()

A.e(char)

B.e(double)

B.e(int)

toString() B.toString()

equals(Object) Object.equals(Object)

888

2000

A.p

B.p

A a2

e(char) A.e(char)

e(double) A.e(double)

1000A.p

A.q

A.r

101

202

Static Fields for A

B.q 301

Static Fields for B

Method Table

Method Table

A.classObject.class

A.classObject.class

B.classObject.class

