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Appendix 1 An Algorithm for Performing Error 
Detection When Parsing Computer 
Programs  

Introduction 
When performing bottom up parsing, we have a stack indicating the constructs already 
parsed, and the input remaining to be parsed.  These together constitute a right sentential 
form. 

Stack Input to be parsed

$ 0 PackageDeclarationOpt 5 ImportDeclarationsOpt 7 ModifiersOpt 27 CLASS 41 IDENT 546 extends IDENT { ...

 
Most parsers assume that the error occurs somewhere close to the point at which the error was 
first detected.  If an error occurs, many general purpose bottom up parsing algorithms attempt 
to recover from the error by deleting a top portion of the stack, and an initial portion of the 
remaining input, and replacing it by a nonterminal, which is pushed on to the stack.  The 
assumption is that the error occurs within a construct corresponding to the nonterminal, that 
bridges the gap between the previously correct input and the following correct input.  
For example, if we had the following fragment of a Java program 
 public void paint( Graphics g ) { 
  g.drawString( "Hello World!"  30, 30 ); 
  } 

with a missing “,” between the string literal “"Hello World!"”,  and the integer literal “30”, 
then we might push the string literal onto the stack, detect an error, then replace the string 
literal on the stack and integer literal current token to the nonterminal “ArgumentList”.  Other 
algorithms might be more aggressive, and reduce everything from after the left parenthesis up 
to the right parenthesis to “ArgumentListOpt”. 

...  ClassBodyDeclarations 256 MethodHeader 257 { 252 Name 316 ( 171 STRINGLIT 147 INTEGERLIT , INTEGERLIT ...

...  ClassBodyDeclarations 256 MethodHeader 257 { 252 Name 316 ( 171 , INTEGERLIT ...  ArgumentList 178

Stack Input to be parsed

Stack Input to be parsed

 
Different error recovery algorithms have different ways of deciding which portion of the stack 
and input (essentially the”handle” for the rule enclosing the error) are reduced to a 
nonterminal.  For example, in the yacc parser generator system, explicit additional grammar 
rules have to be included that use the special nonterminal “error”, that can match anything.  
Essentially the stack is cut back to the topmost state that can shift “error”, and input is 
consumed until the current token can then be shifted onto the stack.  The yacc algorithm is 
notoriously bad at accidentally getting on the wrong track.  The grammar designer must be 
exceptionally sparing in their use of grammar rule involving the “error” nonterminal. 
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Other error recovery algorithms are more explicit about the manner in which the error is 
corrected.  They involve insertion and deletion of tokens to convert the program into 
something that is syntactically valid.  Such algorithms still satisfy the same general model, 
and end up reducing the top portion of the stack and the following input containing the error 
to a nonterminal that bridges the gap between the previously correct input and the following 
correct input. 
A question that has to be asked is whether there is really a need to take into account the 
previous context when dealing with errors.  The real error may well be a long way before the 
error was detected.  For example the error in the following Java fragment is probably the 
missing left brace, but the error is not detected until the “else”. 
if ( a < b ) 
 min = a; 
 max = b; 
 } 
else { 
 min = b; 
 max = a; 
 } 

Many spurious error messages can be generated as a result of this. 
There is some advantage in “bridging the gap” for syntax errors, in that it allows an almost 
complete parse tree to be built, so that the rest of the compiler can continue performing 
semantic analysis.  However, after syntax errors, such as unmatched braces, the compiler’s 
notion of scope is often wrong, and the number of spurious semantic errors is often excessive.  
Continuing the semantic analysis may be necessary if parsing a language for which semantic 
analysis feeds back to the lexical analyser.  For example in C it is necessary to determine 
whether an identifier is declared as a type or not, to know how to parse text such as “a * b”.  
However, even if the parser only creates fragments of the parse tree after detection of an error, 
it is probably still possible to perform semantic analysis of these fragments.  If the parser 
creates several alternative fragments, the semantic analysis can be performed on each 
alternative, so long as the information is not kept globally.  Also, as the compilation process 
becomes automated, language designers are moving towards demanding that the language has 
a clearly defined LALR(1) syntax, without the need to relate it to semantic analysis. 
I can see little justification for the requirement that the parser “bridge the gap” and essentially 
convert the program into something that is syntactically valid, when errors are detected in the 
program.  There is no guarantee that the cause of the error is close to the point of detection.  
The requirement that a program be essentially converted into a valid program has major 
problems if the parser gets on the wrong track, or the programmer writes valid code out of 
context.  For example, the formal definition of Pascal requires that variables be declared 
before procedures and functions, but many compilers are more relaxed about the ordering, 
and permit the intermingling of different kinds of declarations.  If the programmer is used to 
using such a compiler, or is attempting to compile a program written for such a compiler, then 
a parser that tries to “correct” a syntactically invalid program might attempt to convert 
declarations that are out of order into something completely different.  Almost all error 
messages will be spurious. 
I believe a much better approach is for the parser to ignore the previous context after 
detecting an error.  When an error is detected, the parser should print out an error message.  
The error message could be a plain statement of “syntax error”, or it could use the information 
on the stack and the current token, to generate a more informative error message.  For 
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example, a more informative error message could list such things as the set of items for the 
top of stack, the symbols on the stack, possible tokens that would allow the parse to continue, 
and the current token.   After displaying an error message, the parser could parse ahead, with 
all possible alternative parses from the point of error, until it runs out of alternatives, or 
reaches the end of the input.  If it runs out of alternatives, it should generate another error 
message, and again parse ahead, with all possible alternative parses from the point of error.  
The parser effectively splits the program up into maximal sized fragments of syntactically 
valid input, and marks the end of each fragment by an error message.  There is no need for the 
grammar designer to add in special rules to deal with syntax errors.  Moreover the whole 
system is independent of the specific grammar being parsed, so such a system could easily be 
inserted into any table driven bottom up parser.  Moreover, such a system seems to be 
remarkably simple.  It is fundamental to its design that it will neither generate much in the 
way of spurious error messages, nor fail to point out errors after the first error message.  The 
only real questions seem to be how to find the longest fragment of syntactically valid input 
after the point of error, and whether such an algorithm can execute in reasonable space and 
time. 

The parsing algorithm 
The parsing algorithm is based on a bottom up parsing technique, such as LALR(1) parsing, 
used by yacc, Java CUP, etc. 
At each stage, we have a set of partial stacks.  Initially, this set contains a single stack, namely 
the stack with the start state pushed on.  So long as no error occurs, the set of partial stacks 
contains a single element, corresponding to the conventional stack. 
After a syntax error, the set of partial stacks can and often does contain several stacks.  Since 
we do not have a previous context, these stacks are “partial stacks”.  We know the states on 
the top portion of the stack, but not the bottom portion of the stack. 
 public void parse() { 
  StackSet stackSet = new StackSet(); 
  stackSet.addElement( StateStack.create( start_state() ) ); 
  while ( true ) { 
   int currentToken = scan(); 
   StackSet newStackSet = performAction( stackSet, currentToken ); 
   if ( newStackSet == null ) // Accept 
    return; 
   else if ( newStackSet.size() == 0 ) { // Error 
    printErrorMessage( stackSet , currentToken ); 
    newStackSet.addTerminalStackSet( currentToken ); 
    } 
   stackSet = newStackSet; 
   } 
  } 

If the set of partial stacks becomes empty, there is no alternative parse, and we have a syntax 
error.  We print an error message, and generate all possible partial stacks with a single state 
that could occur after shifting the current token on to the stack. 
// In the class StackSet 
 public void addTerminalStackSet( int terminalID ) { 
  for ( int stateID = 0; stateID < table.size(); stateID++ ) { 
   Action action = table.getAction( stateID, terminalID ); 
   switch ( action.actionType() ) { 
    case Action.SHIFT: 
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     addElement( StateStack.create( action.shiftState() ) ); 
     break; 
    } 
   } 
  } 

Performing a shift-reduce parse with a set of partial stacks is not so different from performing 
it for a single stack.  For each stack in the old set, we create a new stack by performing the 
action indicated by the top of stack state, and current token.  If the action is to shift or accept, 
the action is clear.  If the action is error, we discard the stack.  If the action is to reduce by a 
rule, there are two situations to consider.  We have to pop as many states off the stack as there 
are symbols on the right hand side of the rule, and push on a state corresponding to the left 
hand side of the rule.  If the stack has more states on it than we need to pop off, there is no 
problem.  The normal action can be performed.  If there are insufficient states to pop off 
(because the construct starts at or before our last detected error), we delete the stack, and 
generate all possible partial stacks with a single state that could occur after shifting the left 
hand side onto the stack. 
 public StackSet performAction( StackSet stackSet, int currentToken ) { 
  StackSet newStackSet = new StackSet(); 
  for ( int i = 0; i < stackSet.size(); i++ ) { 
   StateStack stack = stackSet.elementAt( i ); 
   StateStack newStack; 
   Action action = table.getAction( stack.stateID(), currentToken ); 
   Rule rule; 
   switch ( action.actionType() ) { 
    case Action.SHIFT: 
     newStackSet.addElement(   
      stack.push( action.shiftState() ) ); 
     break; 
    case Action.REDUCE: 
     rule = table.getRule( action.ruleID() ); 
     newStack = stack.pop( rule.rhsLength() ); 
     if ( newStack == null ) { 
      stackSet.addNonterminalStackSet( rule.lhs() ); 
      } 
     else { 
      int shiftState = 
       table.getReduce(  
        newStack.stateID(),  
        rule.lhs() ).shiftState(); 
      stackSet.addElement( newStack.push( shiftState ) ); 
      } 
     break; 
    case Action.ACCEPT: 
     return null; 
    case Action.ERROR: 
     break; 
    } 
   } 
  return newStackSet; 
  } 
 

// In the class StackSet 
 public void addNonterminalStackSet( int nonterminalID ) { 
  for ( int stateID = 0; stateID < table.size(); stateID++ ) { 
   Action action = table.getReduce( stateID, nonterminalID ); 
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   switch ( action.actionType() ) { 
    case Action.SHIFT: 
     addElement( StateStack.create( action.shiftState() ) ); 
     break; 
    } 
   } 
  } 

Some examples 
Suppose we have a syntax error in a Java program, followed by the input 
 while ( a < 10 ) 
  a = a+1; 
 System.out.println( "a = " + a ); 
 } 
} 

The parser prints an error message, and creates the three alternative partial stacks 
corresponding to the three states that can result by shifting “while”. 
WHILE 330 
WHILE 433 
WHILE 471 

These three states correspond to an ordinary “while” statement not nested inside the “then” 
part of an “if” statement, a “while” statement nested inside the “then” part of an “if” 
statement, and a “do ... while” statement. 
{ WhileStatement → WHILE . LEFT Expression RIGHT Statement } 

{ WhileStatementNoShortIf → WHILE . LEFT Expression RIGHT StatementNoShortIf , 
 WhileStatement → WHILE . LEFT Expression RIGHT Statement } 

{ DoStatement → DO Statement WHILE . LEFT Expression RIGHT SEMICOLON } 

After parsing up to the beginning of the assignment statement, the third alternative drops out. 
WHILE 330 LEFT 365 Expression 366 RIGHT 367 IDENT 333 
WHILE 433 LEFT 461 Expression 462 RIGHT 463 IDENT 439 

Eventually the sub-statement is shifted onto the stack. 
WHILE 330 LEFT 365 Expression 366 RIGHT 367 StatementExpression 286 SEMICOLON 484 
WHILE 433 LEFT 461 Expression 462 RIGHT 463 StatementExpression 286 SEMICOLON 484 

The whole “while” statement is reduced to “BlockStatement”, then “BlockStatements”, and 
the identifier is shifted onto the stack. 
BlockStatements 486 IDENT 333 
BlockStatements 280 IDENT 333 
BlockStatements 383 IDENT 333 
BlockStatements 356 IDENT 333 

It is worth noting that the number of alternatives increases at this point.  The reason for this is 
that there are four different contexts in which “BlockStatements” can occur, namely 
{ Block → LEFTCURLY BlockStatements . RIGHTCURLY } 
{ ConstructorBody → LEFTCURLY BlockStatements . RIGHTCURLY } 
{ ConstructorBody → LEFTCURLY ExplicitConstructorInvocation BlockStatements . 
RIGHTCURLY } 
{ SwitchBlockStatementGroup → SwitchLabels BlockStatements . } 
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The parsing continues, shifting the method invocation onto the stack, reducing it to 
“StatementExpression”, shifting the semicolon onto the stack, reducing 
“StatementExpression ;” to “BlockStatement”, then “BlockStatements BlockStatement” to 
“BlockStatements”, etc., shifting on the right brace, and obtaining 
BlockStatements 486 RIGHTCURLY 488 
BlockStatements 280 RIGHTCURLY 485 
BlockStatements 383 RIGHTCURLY 385 
SwitchBlockStatementGroups 352 RIGHTCURLY 354 

After shifting on the final right brace, we get 
ClassBodyDeclarationsOpt 260 RIGHTCURLY 265 
BlockStatements 486 RIGHTCURLY 488 
BlockStatements 280 RIGHTCURLY 485 
BlockStatements 383 RIGHTCURLY 385 
SwitchBlockStatementGroups 352 RIGHTCURLY 354 

The current token is now end of file, and the first alternative manages to reduce down an 
accept state, so there are no more error messages. 
If we delete the “+” in 
 System.out.println( "a = " + a ); 

then we generate a second error at this point. 
We shift the identifier onto the stack, generating 15 new stacks. 
IDENT 12 
IDENT 16 
IDENT 546 
IDENT 43 
IDENT 103 
IDENT 77 
IDENT 95 
IDENT 241 
IDENT 243 
IDENT 333 
IDENT 272 
IDENT 481 
IDENT 476 
IDENT 371 
IDENT 439 

because there are lots of different contexts in which identifiers can occur. 
The number of alternatives rises to 22 on processing the right parenthesis, then drops down to 
6, before the first alternative is accepted. 
ClassBodyDeclarationsOpt 260 RIGHTCURLY 265 
BlockStatements 486 RIGHTCURLY 488 
BlockStatements 280 RIGHTCURLY 485 
BlockStatements 383 RIGHTCURLY 385 
SwitchBlockStatementGroups 352 RIGHTCURLY 354 
VariableInitializers 494 RIGHTCURLY 497 

Potential problems with algorithmic complexity 
When a syntax error is detected, the number of stacks created is equal to the size of the set of 
states { T | there exists a state S such that goto( S, currentToken ) == T }.  For a standard 
grammar for Java, this is at most 25.  The worst cases are 
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   5 COLON 
   5 DOT 
   6 COMMA 
   6 LEFTCURLY 
  10 RIGHTSQ 
  13 LEFTSQ 
  15 IDENT 
  15 RIGHTCURLY 
  22 LEFT 
  24 RIGHT 
  25 SEMICOLON 

For example, most of the cases for a semicolon occur because all simple statements and 
declarations terminate with a semicolon.  These alternatives rapidly disappear, after a 
reduction is performed, and the next token is shifted onto the stack.  For example, if a 
semicolon is followed by “while”, 25 alternatives are created, but there are only 6 alternatives 
after shifting the “while”. 
Additional stacks can be generated by a reduction that pops off all states on a partial stack.  
The number of stacks created is equal to the size of the set of states { T | there exists a state S 
such that goto( S, leftHandSide ) == T }.  For a standard grammar for Java, this is at most 20.  
The worst cases are 
   4 AdditiveExpression 
   4 BlockStatements 
   4 PrimitiveType 
   4 Type 
   5 ModifiersOpt 
   5 ShiftExpression 
   6 StatementNoShortIf 
   7 Statement 
   8 ArgumentListOpt 
   8 Block 
  11 Name 
  11 UnaryExpression 
  20 Expression 

Since there could be reductions by rules for several nonterminals, there could be more than 20 
stacks generated, but the total number of new stacks cannot possibly be more than the total 
number of states, a constant for a given grammar.  Hence the total number of stacks generated 
after parsing n tokens after an error is potentially of order O(n).  In the worst case, for some 
grammars, this order can be achieved.  For example, consider the grammar 
S→ X Y 
X→ a X b | ε 
Y→ b Y c | ε 

This grammar generates text of the form am bm bn cn, for some m >= 0, n >= 0.  Suppose we 
have a syntax error, then a sequence of “b”s.  It is impossible to tell how many of the “b”s 
belong to “X” and how many belong to “Y”, so we generate n + 1 alternative stacks, after 
shifting n “b”s.  For example, when n is 5, we have: 
b 4 b 4 b 4 b 4 b 4 
X 3 b 4 b 4 b 4 b 4 
X 3 b 4 b 4 b 4 
X 3 b 4 b 4 
X 3 b 4 
X 9 b 10 
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In fact, for my sample Java grammar, by parsing tens of millions of randomly generating 
input sequences, I have been unable to get more than the 25 stacks created after shifting a 
semicolon.  While I have not been able to characterise the conditions necessary for the 
number of stacks to be bounded, it does appear that there is no problem with algorithmic 
complexity for realistic grammars.  This is not surprising, because as the parser consumes 
more tokens beyond the error, and more information becomes available, we would expect the 
parser to become more certain about what it is parsing.  Thus we would expect the number of 
alternatives to decrease, rather than increase. 
When a syntax error occurs in the body of a method or constructor declaration in a Java 
program, the parser quickly settles down to about 6 alternative stacks.  After processing the 
start of a method or constructor declaration, a single alternative stack remains.  Hence the 
algorithm seems to have little problems with complexity for realistic grammars. 
 
 
 


