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1 Introduction

It is obvious from student questions and the answers to test questions that
many students know very little about logarithms. Even questions which I
have designed to be trivial are made difficult because they assume knowledge
which is so often absent.

This note is intended to tell you something about logarithms in an in-
formal way with little or no proof.

2 How logarithms arise.

Logarithms arise or are used in three contexts (perhaps more!) and aspects
which are important or natural in one area may be quite unimportant or
unnatural in another application. As mathematical theory and understand-
ing has developed and as calculators have become widespread, the whole
emphasis of logarithms has changed. Aspects which were once of prime im-
portance may now be quite secondary, and this may be the root of many of
our problems.

2.1 As a computational tool

This is how logarithms were introduced in pre-calculator days, as an aid
to multiplication, division, raising to powers and extraction of roots. The
logarithm was a mysterious number which we found from looking up a table
in a “log book” (which also contained sine, cosine and other interesting
functions).

The properties used in calculation were —

log(a× b) = log a + log b (1)
log(a/b) = log a− log b (2)

log ab = b× log a (3)
log( b

√
a) = (log a)/b (4)

The tables were headed “Common Logarithms”, but the books included
other rather mysterious tables of “Natural Logarithms”.
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Even though logarithms are now seldom used in calculations, the four
equations above are essential for a lot of later work using logarithms.

2.2 With exponents and the exponential function

Eventually we progressed from simple algebra to calculus and learnt more
about exponents and the exponential function. In particular, if

x = yz (5)
then z = logy x (6)

(which was read as z is the “logarithm of x to base y”.)
We now found that the “common logarithms” were actually logarithms

to base 10 (log10, often just written as “log” or as “lg”), and that the
“natural logarithms”, often written as “ln” were logarithms to the base e,
where e = 2.7182818285 . . ., from solving the equations d

dxf(x) = f(x), with
the solution f(x) = ex.

The approach through the exponential function is the most natural for
most physical systems. Physical models and descriptions are often based on
linear differential equations and have solutions in exponential and similar
functions. As finding the “value whose exponential is x” means finding lnx,
the logarithmic functions also arise naturally in these applications. The
main operations with logarithms follow directly from their interpretation as
powers of the base.

2.3 As the result of an integral

When studying integration we very early learn that∫
xndx =

1
n + 1

xn+1 + C (7)

which clearly fails for n = −1. But eventually (after learning a lot more
calculus) we find that

lnx =
∫ x

1

1
t
dt (8)

Much of the mathematical study of the logarithms follows from this
definition, but it seems to have little direct relevance to most physical ap-
plications of logarithms (which includes data communications).

3 General properties

Given that logarithms may use any convenient base, it is often necessary
to convert logarithms in one base into logarithms in another base. We
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write the standard exponential equation (equation 5 above), restate it to
use logarithms and then take logs of the original equation in another base.

if a = bc

then c = logb a log to base b

and logx a = c logx b log to base x

= logb a logx b

whence logba =
logx a

logx b
(9)

In communications and related topics such as information theory we often
need logarithms to base 2. The conversion is easily done using Equation 9
and either common or natural logarithms (both of which are available on
most scientific calculators).

log2 x =
log10 x

log10 2
(10)

or =
lnx

ln 2
(11)

Some relations involving logarithms must be stated here. Most follow
from equations 1 to 4 and some are even those equations restated. Except
where a base is stated, they apply for any base

log 1 = 0 (12)
logz z = 1 (13)

logz z2 = 2 (14)
logz zn = n (15)

logz 1/z = −1 (16)
log 1/y = − log y (17)

4 Some specific examples

4.1 Signal to noise ratios

While many physical measurements involve actual units such as megahertz
(MHz), microseconds (µs) or millivolts (mV), others are much more sub-
jective (“Is this sound twice as loud as that?”, “Is this light as bright as
that one?”). For measurements which compare two things, using terms like
“twice” and “a tenth” it is often best to use the logarithm of the ratio of
the values rather than absolute values.
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A good example of a ratio is the “signal to noise ratio” or “S/N ratio”
where a signal is received in the presence of noise. There is a long tradition
in audio engineering and acoustics of taking the logarithm of the ratio of the
signal power to the noise power as the measure on “noisiness” or quality of
the signal. Taking the logarithm to base 10 yields the unit of “bel” (named
after Alexander Graham Bell who not only invented the telephone but did
a lot of pioneering work in acoustics). As the bel is a rather too large unit
for convenience, we normally use the “deciBel” or one tenth of a bel as the
working unit, abbreviated as “dB”.

If two signals are received with powers P1 and P2, their powers are in
the ratio

power ratio = 10 log10

P1

P2
dB (18)

If a signal is received with a power S in the presence of noise with power
N , the “signal-to-noise ratio” is given by

S/N ratio = 10 log10

S

N
dB (19)

Some important points and important values are –

• A power ratio of 10:1 corresponds to 10dB; a voltage (or current) ratio
of 10:1 is 20dB1.

• A power change of 1dB is barely perceptible to most people.

• A 2:1 power ratio gives 10 log 2 = 2× 0.3010 . . . ≈ 3dB.

• A signal-to-noise ratio of 0dB does not mean zero signal. It means
that log(S/N) = 0, that S/N = 1 or S = N . With appropriate
design, some communication systems operate with S/N ratios of 0dB,
or even −10dB (signal power one tenth of the noise power).

4.2 An example

(Taken from the 2000 314FC Test)

According to Shannon’s result the capacity C of a noisy channel
with bandwidth W and signal and noise powers S and N is

C = W log2(1 + S/N)

Assuming a channel with a bandwidth of 1 MHz, calculate the channel
capacities

1. with a signal noise ratio of 0 dB (zero decibels)

1In electronics we usually observe voltage ratios rather than power ratios. Because
power is proportional to the square of the voltage, a 2:1 voltage ratio gives a 4:1 power
ratio, or 6dB. A 10:1 voltage ratio gives a 100:1 power ratio, or 20dB.
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2. with a signal noise ratio of 5 dB (assume log10 3 ≈ 0.5)

Three points must be made here –

1. As we are working with logarithms (and to base 2) we need to under-
stand something about logarithms.

2. We are told to “assume log10 3 ≈ 0.5”. Given that we are working
with numbers that are seldom simple, a direction such as this is a very
strong hint that it may simplify things.

3. Given that there is an overall instruction that calculators may not
be used it is probable that the values are cunningly chosen to simplify
calculations. (This fits in with the previous point.) If you find difficult
numbers you have probably made a mistake.

In data communications data rates and speeds, the pre-
fix “kilo” always means 103 = 1000 and never 210 = 1024.
Similarly “mega” is always 106 = 1, 000, 000, rather than
220 = 1, 048, 576. Data quantities, such as “megabyte”, are de-
lightfully ambiguous and can use either the decimal or the binary
meaning, or even a mixture of the two!

If you are to transmit a file of x megabytes at y megabits per sec-
ond, you really need to ask exactly what is meant by “megabyte”.

To solve the two questions –

1. A signal:noise ratio S/N = 0dB means that 10 log10(S/N) = 0. There-
fore (S/N) = 100 = 1; the signal and noise powers are equal. Inserting
into Shannon’s formula

C = W log2(1 + S/N)
= W log2(1 + 1)
= W log2(2)
= W because logx x ≡ 1
= 1 Mbps

You need to know something about logarithms, but there is no difficult
calculation.

2. The signal-to-noise ratio is given as 5dB. Therefore 10 log10(S/N) = 5,
or log10(S/N) = 0.5. But we are told to assume that log10 3 ≈ 0.5,
from which S/N = 3. Inserting into Shannon’s formula

C = W log2(1 + S/N)
= W log2(1 + 3)
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value comment formula result correct
1 should be obvious! — 0 0.0000

10 — 1 1.0000
100 — 2 2.0000

1000 — 3 3.0000
2 210 ≈ 103. (1024 ≈ 1000) As log 2 = log x

log2 x ,

log 2 = log 1000
log2 1000 = 3

10

0.3 0.3010

4 4 = 22 log 4 = 2 log 2 0.6 0.6021
8 8 = 23 log 8 = 3 log 2 0.9 0.9031
5 5 = 10÷ 2 log 5 = log 10− log 2

= 1− 0.3
0.7 0.6990

9 92 = 81 ≈ 80.
log 80 = log(10× 8)
= log 10 + log 8

log 10 = 1, log 8 = 0.9
log 9 = 1+0.9

2

0.95 0.9542

3 3 =
√

9 log 3 = log 9
2 = 0.95

2 0.475 0.4771
6 As 6 = 2× 3,

log 6 = log 2 + log 3
0.3 + 0.475 0.775 0.7782

7 Whoever wants log 7? But
72 = 49 ≈ 50

log 50 = log 10 + log 5
log 7 = 1.7

2 = 0.85
0.85 0.8451

Table 1: Derivation of Base-10 logarithms 1–10

= W log2(4)
= 2W because logx x2 ≡ 2
= 2 Mbps

The calculation is again simple, provided that you have a knowledge
of logarithms.

5 Estimating some simple logarithms.

You often need logarithms of some simple numbers. Surely you don’t have
to remember them all if your calculator has flat batteries?

You don’t. This section and Table 1 show how to derive reasonable ap-
proximations to some frequent logarithms to base 10. Logarithms to base 2
are then these values divided by 0.3, or even multiplied by 3. And remember
that a lot of the time in real-world work with signal/noise ratios, buffer sizes
and so on, an error of 10% or even 20% does not matter too much to get a
good idea of the resultant value.

Unless otherwise stated, all logarithms in this table are to base 10.

6 Units and Multipliers

Another area where a lot of answers had trouble was in the units. A band-
width of 1 MHz (megahertz = million per second) probably translates into
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name abbrev multiplier importance
yotta Y 1024 v. slight
zetta Z 1021 v. slight

exa E 1018 slight
peta P 1015 slight
tera T 1012 moderate
giga G 109 moderate

mega M 106 very
kilo k 103 very

milli m 10−3 very
micro µ 10−6 very
nano n 10−9 moderate
pico p 10−12 moderate

femto n 10−15 slight
atto a 10−18 slight

zepto z 10−21 v. slight
yocto y 10−24 v. slight

Table 2: Official SI (International) prefixes

megabits per second in the capacity. The logarithm itself is dimensionless;
it may scale values but not otherwise change the units.

The multiplying prefixes, shown in Table 2 with their names, abbrevia-
tions and multiplying factors, are also important. The values from “tera”
to “nano” are important, the extreme ones less so (but may become more
widespread). Many students confused “kilo” with “mega”.

In searching for some examples of BIG values, I found that in astronomy,
1 light year = 9.5Pm, and 1 megaparsec = 30.9 Zm.

6.1 Relations between frequency and time

You must be familiar with what could be called “reciprocal prefixes”, such
as {µ and M} (10−6 and 106), {n and G} (10−9 and 109) and {m and k}
(10−3 and 103) particularly for times (say ns or µs) and frequencies (GHz
and MHz).

But equally important are pairs of units, displaced so that both the
period and corresponding frequency are numerically 1 ≤ value < 1000.
(Often both may be approximated to integers.) Thus it is better to say that
a signal with a frequency of 40 MHz has a period of 25 ns, than to use the
equivalent 0.025µs. The conversions between {MHz ⇔ ns }, {GHz ⇔ ps }
and {kHz ⇔ µs } should almost automatic.
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