
CompSci 230
Software Construction

Lecture Slides #22: Black Box testing with JUnit S1 2016

Agenda

CompSci 230: JU2

 Topics:
 Testing software

 Testing techniques overview

 Black Box Testing
 Picking test cases

 Writing test cases in JUnit

Testing

CompSci 230: JU3

 Different types of testing
 Purpose of testing?

 Black-box testing
 Treat implementation under test as black box (look at it how it interacts

with the outside but not at how it is implemented internally)
 Typically design tests based on which output / behavior we expect for

certain input

 White-box testing
 Design tests based on implementation itself (structure of code)
 Try to test all execution paths

 Usability testing
 Get user opinion about an implementation

Black-box testing

CompSci 230: JU4

 Implementation under test (IUT) is regarded as a “black box”
 E.g., IUT could be a class, a method, a module, a service, etc.

 Tests interact with the IUT’s interface
 E.g., if the IUT is a class, tests interact with the class (or objects of the

class) by calling its methods and inspecting their return values
 Objectives:
 Design tests so any faults reveal themselves (i.e., trigger failures)
 Minimise the number of tests required

 From here, we will assume that the IUT is a class or method and
that we will pass parameters and receive return values (or trigger
exceptions)

Designing black box tests

CompSci 230: JU5

 Design tests so they fail when a fault triggers a failure
 Tests that trigger intended behavior must not fail

 Example:
 A method throws SomeCustomException when invoked with a certain

combination of parameters. Suppose this is intended behaviour (i.e., it is
what the method should do)

 A test supplying such a combination must not fail when this exception is
thrown (the exception is not a failure in this case). That is:
 The test must not flag a fail if the exception is thrown and must catch the

exception instead
 The test must fail if the exception is not thrown

Choosing suitable test cases

CompSci 230: JU6

 In most cases, the number of possible parameter values that we
can pass to a method is practically unlimited
 Which ones do we choose for our tests?

 As a general rule, we want to choose those test cases that are
most likely to trigger a failure

 We want to keep the number of test cases small (minimise effort)
 Writing test cases, identifying suitable test cases, and minimising the

number of test cases all require effort.
 Need to find some sort of compromise

Input partitioning

CompSci 230: JU7

 In a lot of cases, we can partition the possible input space
 Example: An airline flies between a variety of destinations using a variety

of aircraft. We have a method that computes which aircraft types can be
used on which flight.
 Input parameters: the shortest runway length of the two airports concerned and

the distance between the airports
 Return value: an array of suitable aircraft types
We also know that:
 Aircraft type 1 requires a minimum runway length of 1800 m and can fly 3000

miles
 Aircraft type 2 requires a minimum runway length of 2300 m and can fly 5000

miles
 Aircraft type 3 requires a minimum runway length of 2200 m and can fly 6000

miles

Input partitioning

CompSci 230: JU8

Distance [miles]

Ru
nw

ay
 [

m
]

0
0

1800

2200

2300

3000 5000 6000

[1]

[1] []

[1,3]

[1,2,3] [2,3]

[3]

[3]

Input partitioning - observations

CompSci 230: UC9

 All parameter value combinations in a partition should give the
same return value
 Testing one value combination from each partition should give us all

possible return values
 Which of these value combinations are worth testing?
 For some partitions, it’s definitely worth testing several combinations, e.g.,

the red partition

 Observation from experience: Faults tend to occur mostly at
boundaries between partitions
 Test either side of each boundary

Good and bad test cases

CompSci 230: JU10

 Which of the following would make a good test set for our example?
1. (1799 m, 3000 nm), (1799 m, 3001 nm), (1800 m, 1 nm), (1800 m, 3000 nm),

(2199 m, 3000 nm), (2199 m, 3001 nm), (2200 m, 3000 nm), (2200 m, 3001 nm),
(2200 m, 5000 nm), (2200 m, 5001 nm), (2200 m, 6000 nm), (2200 m, 6001 nm),
(2299 m, 3000 nm), (2299 m, 3001 nm), (2299 m, 6000 nm), (2299 m, 6001 nm),
(2300 m, 3000 nm), (2300 m, 3001 nm), (2300 m, 5000 nm), (2300 m, 5001 nm),
(2300 m, 6000 nm), (2300 m, 6001 nm)

2. (1000 m, 1000 nm), (1000 m, 2000 nm), (1000 m, 3000 nm), (1000 m, 4000 nm),
(1000 m, 6000 nm), (1000 m, 7000 nm), (1500 m, 1000 nm), (1500 m, 2000 nm),
(1500 m, 3000 nm), (1500 m, 4000 nm), (1500 m, 6000 nm), (1500 m, 7000 nm),
(2000 m, 1000 nm), (2000 m, 2000 nm), (2000 m, 3000 nm), (2000 m, 4000 nm),
(2000 m, 6000 nm), (2000 m, 7000 nm) , (2500 m, 1000 nm), (2500 m, 2000
nm), (2500 m, 3000 nm), (2500 m, 4000 nm), (2500 m, 6000 nm), (2500 m, 7000
nm)

 Which of the “better” test cases would you consider the most important
ones?

Test fixtures

CompSci 230: JU11

 A test fixture is code that we write for the purpose of testing the
IUT
 Test fixtures set up the environment for a test, e.g., create and configure

objects and other variables that we may wish to pass to the IUT
 Test fixtures can bring the application into a known stable state so test

results become reproducible

 Drivers are pieces of code that invoke methods in IUT
 Stubs are fake methods that the IUT can call while it is under test
 give tester full control over the return value
 may replace methods that have yet to be implemented
 allow for in-test analysis of the parameters that the IUT actually passes to

the method

JUnit

CompSci 230: JU12

 JUnit is a test framework for Java
 Included in Eclipse (but not just Eclipse)
 JUnit tests are methods in classes
 At top of the class .java file, we put:

import static org.junit.Assert.*;
 Apart from that, the syntax is as for any other class, with some special

additions:
 Test methods are public void
 Each method that represents a JUnit test is preceded by an @Test
 A test class can contain multiple test methods

 JUnit tests usually also contain a number of special functions
 Tests pass if the method returns without a call to fail() or a failed

assertion

Junit fail() and assertions

CompSci 230: JU13

 A call to fail() in a test causes the test to fail
 We use this if we detect ourselves that the test has failed

 An assertion describes a condition that must be true in order for
the test not to fail
 A test may still fail even if an assertion in the test is true
 Junit provides a number of assertion methods: assertEquals(), assertTrue(),

assertNull(), assertNotNull(), assertSame(), assertArrayEquals(), …
 A test may contain more than one assertion (but shouldn’t contain too

many or it becomes difficult to tell why the test failed)

JUnit tests and exceptions

CompSci 230: JU14

 If the IUT throws a custom exception (or we expect it to throw a
built-in exception under normal operation), then it may be
desirable to test if the exception is actually thrown in appropriate
test cases
 If so, we must catch the exception (and then do nothing – except maybe

check that it was thrown for the expected reasons).
 If the exception is unexpectedly not thrown, then we must explicitly fail()

the test

JUnit example - IUT

CompSci 230: JU15

public class DodgyClass {

public int addOne(int x) {
return x+1;

}

public int addAbsoluteValues(int x, int y) {
return x + y;

}

public double reciprocalIfSmallerThan10(double x) throws ArgumentIs10OrLargerException {
if (x < 10) {

return 1/x; // note this fails for x=0
}
else
{

throw new ArgumentIs10OrLargerException();
}

}

}

JUnit tests

CompSci 230: JU16

import static org.junit.Assert.*;
import org.junit.Test;

public class TestDodgyClass {

@Test
public void testAddOne() {

DodgyClass d = new DodgyClass();
assertEquals(5,d.addOne(4)); // test fails if assert fails

}

@Test
public void test1AddAbsoluteValues() {

DodgyClass d = new DodgyClass();
assertEquals(8,d.addAbsoluteValues(3,5)); // this assert succeeds by coincidence

}

@Test
public void test2AddAbsoluteValues() {

DodgyClass d = new DodgyClass();
assertEquals(8,d.addAbsoluteValues(3,‐5)); // this assert fails: test fails

}
…

JUnit tests with exceptions

CompSci 230: JU17

@Test
public void test1ReciprocalIfSmallerThan10() {

DodgyClass d = new DodgyClass();
try {

assertEquals(0.33,d.reciprocalIfSmallerThan10(3),0.01);
} catch (Exception e) {

// we shouldn't get here if test succeeds, so explicit fail
fail("Unexpected exception!");

}
}

@Test
public void test2ReciprocalIfSmallerThan10() {

DodgyClass d = new DodgyClass();
try {

d.reciprocalIfSmallerThan10(10); // this should throw an exception
fail("Didn't throw ArgumentIs10OrLargerException for argument 10");

}
catch (ArgumentIs10OrLargerException e) {

// just what we wanted, nothing to do here
}

}

All exceptions should
be caught; expected

exceptions must be caught
with no further action

Running JUnit tests in Eclipse

CompSci 230: JU18

 Right-click on the test class in the Package Explorer -> Run as… -> JUnit
Test

 This runs all tests in the class
 Results are available on the JUnit tab

Review

CompSci 230: JU19

 Give an example of something that black box testing does not do
 What are we trying to achieve when we design black box tests?
 In COMPSCI230, students pass right out if they achieve a minimum of

50% of marks in the theoretical part and the practical part. Imagine a
method that take the marks for the theoretical and practical parts and
returns true for a guaranteed pass and false for a potential fail. Can you
draw a diagram showing the input partitioning for these cases?

 Are JUnit tests drivers or stubs?
 What happens when an assertion fails?
 What happens when an assertion holds?
 What do we need to do if an IUT is supposed to throw an exception in

the course of correct operation?

