
Regular expressions and finite automata

Bakhadyr Khoussainov

Computer Science Department, The University of Auckland, New Zealand

bmk@cs.auckland.ac.nz

Regular expressions are used in many programming languages and tools. They can be used
in finding and extracting patterns in texts and programs. For example, using regular expressions
we can find lines in texts that contain specific words, characters and letters. We can replace,
change, clean and reformat sections in html and xml documents, and more generally, in semi-
structured data. Using regular expressions, we can also specify and validate forms of data such
as passwords, e-mail addresses, user IDs, etc. The aim of this section is to introduce regular
expressions and study their relationship with finite automata. In particular, we will describe
methods that convert regular expressions to finite automata, and finite automata to regular
expressions.

1 Regular expressions

Every arithmetic expression without an integer variable can be evaluated. The value of such
expressions are integers. For example, the value of the arithmetic expression (((1 + 7) − (25 −
19))×2) is 4. In this section, we show how to built expressions called regular expressions. These
expressions can also be evaluated. The values of regular expressions are languages. Here is now
our definition of regular expressions.

Definition 1. Let Σ be an alphabet. We define regular expressions of the alphabet Σ by

induction:

Base Case: The following are regular expressions: each letter σ of Σ, and the symbols ∅ and λ.

Inductive step: Assume that r1 and r2 are regular expressions that have been defined. Then

each of the following is a regular expression:

1. (r1 + r2).
2. (r1 · r2).
3. (r⋆

1).

Thus, every regular expression is a string that is built using the rules above. For example, for
the alphabet {a, b}, the following are regular expressions: a, b, ((a⋆)+(b⋆)), (((a⋆)+(b⋆)) ·(a ·b)),
(((a⋆) + (b⋆)) + λ). To represent regular expressions, we use symbols r, s, t, etc.

Every regular expression r can be evaluated. The value of the regular expression r, written
as L(r), is the language defined below. We call the language L(r) the language of r. Since r is
defined inductively, the language L(r) is also defined inductively. The reader needs to recall the
concatenation and the star operations on languages introduced in Lecture 11.



Definition 2. For the regular expression r, the language L(r) is defined as follows:

Base Case:

1. If r = a, where a ∈ Σ, then L(r) = {a}.
2. If r = ∅ then L(r) = ∅.
3. If r = λ then L(r) = {λ}.

Inductive step: Assume that the languages L(r1) and L(r2), for regular expressions r1 and r2,

have been defined. Then:

1. L(r1 + r2) = L(r1) ∪ L(r2).

2. L(r1 · r2) = L(r1) · L(r2).

3. L(r⋆
1) = (L(r1)

⋆.

Note the following. In part 2) of the inductive step we use the symbol · in two different ways. On
the left side of the equality, the symbol · is used as a symbol. On the right side of the equality,
the symbol · is used as the concatenation operation on the languages. Similarly, in part 3) of
the inductive step, the symbol ⋆ is used as a symbol and as an operation.

Now we give several examples of languages L(r) defined by regular expressions r. In all these
examples, the alphabet is {a, b}.

1. L(a · b + b) = {ab, b}.
2. L(b⋆) = {λ, b, bb, bbb, bbbb, . . .}.
3. L(a⋆ · b⋆) = {anbm | n ≥ 0 and m ≥ 0}.
4. L((a + b)⋆ · (a · b · a) · (a + b)⋆) = {w | w contains the substring aba}.
5. L(∅⋆) = {λ}.
6. L(a⋆·a·(bbbaaa)·b·b⋆) = {w | w there exist nonempty strings u and v such that w = ubbbaaav,

where u consists of a’s only, and v consists of bs only }.

Strictly speaking, in our examples above we did not follow the syntax of writing the regular
expressions. For example, by a · b + b we meant the regular expression ((a · b) + b). However, we
follow the general rules by omitting parenthesis in order not to make our notation cumbersome.
The general rules say that · is of higher precedence then +, and ⋆ is higher precedence than ·.
Thus, for example a · b + a · b⋆ represents ((a · b) + (a · (b⋆)).

Definition 3. We say that a language L ⊆ Σ⋆ is regular if there exists a regular expression r

such that L = L(r). In this case, we also say that r represents the language L.

Note that if r represents L then r + ∅, r + ∅+ ∅, . . . all represent L. Therefore every regular
language has infinitely many regular expressions representing it. Now observe the following. We
have two quite different ways of describing languages. The first uses finite automata, and the
second uses regular expressions. In the next two sections we show that these two methods of
describing languages are equivalent.



2 From regular expressions to finite automata

The goal of this section is to provide a method of converting regular expressions r into automata
recognizing L(r). Here is the main goal of this section. We want to show that

Every regular language is FA recognizable.

Let r be a regular expression. We want to show that L(r) is FA recognizable. In order to
show that we just follow the inductive definition given for the language L(r) from the previous
section and show that L(r) is FA recognizable. We use FA with silent moves.

Base Case: Assume that r is defined in the base case. Then L(r) is either {aσ} for some
σ ∈ Σ or ∅ or {λ}. Clearly in each case L(r) is FA recognizable.

Inductive step: In this step there are three cases to consider.

Case 1. Assume that r is of the form (r1 + r2). We now use the inductive hypothesis applied
to r1 and r2. By the hypothesis, the languages L(r1) and L(r2) are FA recognizable (and hence
DFA recognizable). The language L(r1 + r2) is by definition L(r1) ∪ L(r2). From the previous
lectures, we know that the union of FA recognizable languages is again FA recognizable. Hence
L(r) is FA recognizable.

Case 2. Assume that r is of the form (r1 · r2). By the inductive hypothesis, the languages
L(r1) and L(r2) are FA recognizable. The language L(r1 · r2) is by definition L(r1) · L(r2). We
want to show that L(r1) · L(r2) is FA recognizable.

Let A1 = (S1, I1, T1, F1) and A2 = (S2, I2, T2, F2) be finite automata recognizing L(r1) and
L(r2), respectively. Both automata are NFA that may have silent moves. We may assume that
the state sets S1 and S2 have no states in common. Using these two automata we want to build
a finite automaton recognizing L(r1) · L(r2).

We now use our method of pretending to be a machine to accept strings in L(r1) · L(r2).
Suppose w is an input string. We first pretend that we are the machine A1 and run A1 on w. If
we never reach a final state of A1 then we reject w. Assume, that we have reached a final state
after processing some prefix of w. In this case we need to nondeterministically choose one of the
following actions:

1. Continue on running A1 on w.
2. Make a silent transition to the initial state of A2 and start simulating A2.

This observation suggests that we can put the automata A1 and A2 together as follows. We keep
the states and transition tables of both machine. We declare the initial states of A1 to be the
initial states, and the final states of A2 to be the final states of our machine. Finally, we add the
λ-transitions from the final states of A1 to the initial states of A2. Based on this description,
we formally define the automaton A = (S, I, T, F ) recognizing L(r1) · L(r2) as follows:

1. S = S1 ∪ S2.
2. I = I1.



3. On input (s, σ), where σ ∈ Σ ∪ {λ}, the transition function T is defined according to the
following rules.
(a) If s ∈ S1 and s is not a final state then T (s, σ) = T1(s, σ).
(b) If s ∈ S1, s is a final state, and σ 6= λ then T (s, σ) = T1(s, σ).
(c) If s ∈ S1, s is a final state, and σ = λ then T (s, σ) = T1(s, σ) ∪ I2.
(d) If s ∈ S2 then T (s, σ) = T2(s, σ).

4. F = F2.

It is not hard to check that A recognizes L(r1) · L(r2).

Case 3. Assume that r is of the form (r1)
⋆. By the inductive hypothesis, the language L(r1)

is FA recognizable. The language L(r⋆
1) is by definition L(r1)

⋆. We want to show that L(r1)
⋆ is

FA recognizable.

Let A1 = (S1, q1, T1, F1) be a finite automaton recognizing L(r1). We want to construct a
finite automaton that recognizes the language L(r1)

⋆. As above, we use our method of pretending
to be a machine that accepts strings in L(r1)

⋆. For an input string w, if it is the empty string
then we accept it as the star of every language contains λ. Otherwise we simulate A1 and read
w. Every time we reach a final state of A1 we have to make a nondeterministic choice. We
either continue on running A1 or make a silent move to one of the initial states of A1. Thus,
we construct our automaton A recognizing L(r1)

⋆ as follows. We keep all the states of A1; we
keep all the transitions of A1; we add λ-transitions from each final state of A1 to every initial
state of A1; we add one new initial state qnew with no outgoing transitions and declare it to be
a final state (this is needed to accept the empty string). Here is a more formal definition of the
automaton A = (S, I, T, F ) recognizing L(r1)

⋆:

1. S = S1 ∪ {qnew}, where qnew is a state not in S1.
2. I = I1 ∪ {qnew}.
3. On input (s, σ), where σ ∈ Σ ∪ {λ}, the transition function T is defined according to the

following rules.
(a) If s ∈ S1 and s is not a final state then T (s, σ) = T1(s, σ).
(b) If s ∈ S1, s is a final state, and σ 6= λ then T (s, σ) = T1(s, σ).
(c) If s ∈ S1, s is a final state, and σ = λ then T (s, σ) = T1(s, σ) ∪ I1.
(d) If s = qnew then T (s, σ) = ∅.

4. F = F1 ∪ {qnew}.

Now it is not hard to check that A recognizes L(r1)
⋆.

3 Generalized finite automata

The goal of this section is to show how to convert finite automata A to regular expressions r

such that L(A) = L(r). There are several methods of such conversions. Here we provide one
method based on an elegant generalization of finite automata.

One can generalize finite automata in many ways. One generalization can be obtained by
assuming that a machine processes an input not just once but may move its head back and forth



as many times as needed. This produces the Turing machine model of computations. Another
generalization of finite automata is obtained by providing an extra memory location for a given
finite automaton. When the automaton reads an input of length n, the memory location can
store at most n amount of information. This type of machines are called pushdown automata.
In this section we explain machines called generalized finite automata that process input strings
block by block instead of symbol by symbol.

Informally, a generalized finite automaton is the same as a finite automaton apart from
the fact that the labels of the transitions are now regular expressions. Thus, a generalized finite
automaton has a finite set of states, some states are initial states, and some are final. In addition,
there are edges between the states so that the edges are labeled with regular expressions. Clearly,
every NFA is a generalized finite automata because the labels of all of its edges are symbols from
the alphabet or the empty string λ. All these labels are regular expressions.

A generalized finite automaton works as follows. The automaton reads a block of symbols
from the input and not necessarily just one input signal, then makes a transition along an edge.
The block of symbols read must belong to the language described by one of the regular expres-
sions that label the edge. Of course, the automaton is nondeterministic so it has several ways
to process the block. A sequence of blocks is now accepted by the automaton if the automaton
can reach a final state by processing the sequence. We now give a formal definition:

Definition 4. A generalized nondeterministic finite automaton, written as GNFA, is a

5-tuple A = (S, I, T, F, Σ), where

1. S is a finite nonempty set called the set of states.
2. I is a nonempty subset of S called the set of initial states.
3. T is a function that labels transitions with regular expressions.

4. F is a subset of S called the set of accepting states.

We say that a GNFA A accepts a string w ∈ Σ⋆ if for some w1,. . .,wn ∈ Σ⋆ we have the
following properties:

1. w = w1 . . . wn.
2. There exists a sequence s1, s2, . . . sn+1 of states of A such that:

(a) s1 is an initial state,
(b) sn+1 is a final state, and
(c) For every i, 1 ≤ i ≤ n, the word wi belongs to the language L(r), where the transition

from si and si+1 has r as a label.

The language recognized by the NGFA A is the set of all strings accepted by A. We use the
same notation as for finite automata:

L(A) = {w ∈ Σ⋆ | A accepts w}.

Our goal now is to show that it is possible to reduce the number of states to 2 of the generalized
automaton A without changing the language recognized. In order to achieve this goal we need
the following definition:



Definition 5. A GNFA A is reduced if the following properties hold:

1. A has exactly one start state q0.

2. There exists exactly one accepting state f not equal to the start state.

3. For any state s there is no transition from s to s0.

4. For any state s there is no transition from f to s.

5. For each pair s, s′ of states not in {s0, f} there exist edges from s to s′.

6. Every transition has exactly one regular expression labeling it.

The fact below shows that we can restrict ourselves to consider reduced GNFA only.

For any GNFA A there exists a reduced GNFA B such that the automata A and B accept the

same language.

We change the automaton A as follows. We add a new initial state q0 with the λ-transitions
to all original initial states. We add a new final state f with the λ-transitions from all original
final states to f . Declare old initial and final states to be neither initial nor final. Thus, now
we have exactly one initial state and one final state. This satisfies the conditions 1), 2) and 3)
needed for a GNFA to be reduced. These changes do not alter the language recognized. If a
transition has several labels, say the labels are r1, . . ., rk, then we label the transition with a
single regular expression which is the sum (r1 + . . . + rk). Finally, for all s, s′ 6∈ {s0, f}, if there
is no edge from s to s′, then we simply add an edge from s to s′ and label the edge with ∅. The
resulting GNFA is equivalent to the original one. This proves the lemma.

Now our goal is to show the following:

For every GNFA A there exists a reduced GNFA B with exactly two states such that

L(A) = L(B).

We can assume that the automaton A is reduced by the fact above. The idea of our proof
is this. We select a state s in A which is neither initial nor final. We remove the state and then
repair the ”damage” done by relabeling and adding some transitions to the original automaton
A. These new labeled transitions recover all the runs lost when the state s is removed. The
new automaton has fewer states than the original automaton and accepts the same language.
Continue this procedure until two states, the initial state and the final state, are left. The
automaton thus constructed will have two states and will then be the desired one.

Now we give a formal construction, called Reduce(A), of the desired automaton. Assume
that A has exactly n states. Now proceed as follows:

1. If n = 2, then A is the desired one.
2. Suppose that n > 2. Take a state s distinct from both the initial state and the final state.

Construct a generalized nondeterministic finite automaton A1 = (S1, I1, T1, F1) according
to the following rules:

(a) S1 = S \ {s}.
(b) I1 = I, F1 = F .



(c) For all s1, s2 ∈ S that are distinct from s such that T (s1, s) = r1, T (s, s) = r2, T (s, s2) =
r3, T (s1, s2) = r4 label the edge from s1 to s2 with the regular expression r1 · r⋆

2r3 + r4.
Thus, T1(s1, s2) = r1 · r

⋆
2 · r3 + r4.

The automaton A1 constructed has the following properties. The number of states of A1

is n − 1. The automaton A1 is still reduced. The automaton A1 recognizes exactly the same
language recognized by A. Indeed, if A makes a transition without going through the state s

then the transition is also a transition of A1. If A makes a transition from state s1 to s then
from s to s2, where s1 and s2 are distinct from s, then these two transitions of A can be replaced
by one transition from s1 to s2 in A1 due to the definition of T1. Similarly, any transition in A1

can be simulated by transitions in A.

In order to complete the proof of the theorem, we continue the procedure above by replacing
A with A1. This continues on until the two states, the initial and final states, are left. The two
state automaton B thus obtained is then the desired one.

Corollary 1. Every FA recognizable language L is regular.

Indeed, let A be an NFA that recognizes L. This automaton is also a GNFA. By the theorem
above there exists a reduced two state GNFA B = (S, I, T, F ) such that L(B) = L. Let s0 be
the initial state and f be the final state of B. Let r = T (s0, f). Then L = L(r). The corollary is
proved.

Thus, we have proved the following result known as the Kleene’s theorem.

Theorem 1 (The Kleene’s theorem). A language L is FA recognizable if and only if L is

regular.

4 Exercise

1. Design an algorithm that checks if a string r is a regular expression of the alphabet {a, b}.
Implement the algorithm.

2. Prove that every finite language is regular.
3. Write down regular expressions representing the following languages over the alphabet {a, b}:

(a) {w1 | w ∈ Σ⋆}.
(b) {λ}.
(c) {w | w ∈ Σ⋆ and w 6= λ}.
(d) {uaabv | u, v ∈ Σ⋆}.
(e) {w | w ends with 000}.
(f) {w | w contains a substring aub such that u has length 6}.
(g) {w | w constains substring abab}.
(h) {w | w ends with an a and no a occurs between any occurrences of b}.
(i) {w | w has a on the 9th position from the right of w}.

4. For each of the following regular expressions r construct finite automata recognizing the
language L(r):



(a) a.
(b) a⋆.
(c) (a⋆ + b⋆).
(d) (a · b).
(e) (a · b)⋆.
(f) (a⋆ + b⋆) · (a · b)⋆.
Your construction should follow the proof of Theorem ??.

5. Consider the automaton B in Figure below. Do the following:
(a) Transform the automaton to the reduced automaton A.
(b) Apply the Reduced(A) algorithm by removing states 0, 1, 2, and 3 turn by turn. Draw

transition diagrams of the resulting generalized nondeterministic finite automata.

3

a

b

a a

b

b

a

b

20

1


