Introduction to Algorithm Analysis

Symbol Table and Hashing

University
of Auckland

+ A ('symbol) table is a set of table entries, (K, V)
+ Each entry contains:
- aunique key, K, and
— a value (information), 7
+ Each key uniquely identifies its entry
+ Table searching:
— Given: a search key, K
- Find: the table entry, (K,V)

Lecture 12 COMPSCI.220.FS.T - 2004 1 %

The
Lniversity
of Auckland

Symbol Table and Hashing

+ Once the entry (K, 7) is found, its value 7, may be
updated, it may be retrieved, or the entire entry, (X,7) ,
may be removed from the table

+ If no entry with key K exists in the table, a new table
entry having K as its key may be inserted in the table

+ Hashing is a technique of storing values in the tables
and searching for them in linear, O(), worst-case and
extremely fast, O(1), average-case time

Lecture 12 COMPSCI.220.FS.T - 2004 2 E

L

. Basic Features of Hashing
of Auckland

+ Hashing computes an integer, called the hash code, for
each object

« The computation, called the hash function, h(K), maps
objects (e.g., keys K) to the array indices (e.g., 0, 1,
ceos D)

+ An object having a key value K should be stored at
location h(X), and the hash function must always
return a valid index for the array

Lecture 12 COMPSCI.220.FS.T - 2004 gl %

COMPSCI.220.FS.T - 2004 - Lecture 12

March 26, 2004

. Basic Features of Hashing
of Auckland

+ A perfect hash function produces a different index value
for every key. But such a function cannot be always
found.

+ Collision: if two distinct keys, K # K,, map to the
same table address, h(K;) = h(K)

+ Collision resolution policy: how to find additional
storage in which to store one of the collided table
entries

Lecture 12 COMPSCI.220.FS.T - 2004 4 %

B A . .
n How Common Are Collisions?

University
of Auckland

+ Von Mises Birthday Paradox:

if there are more than 23 people in a room, the
chance is greater than 50% that two or more of them
will have the same birthday
+ Thus, in the table that is only 6.3% full (since 23/365 =
0.063) there is better than 50—50 chance of a collision!

Lecture 12 COMPSCI.220.FS.T - 2004 5 E

. How Common Are Collisions?
of Auckland
* Probability Q,(#) of no collision (that is, that none
of the » items collides, being randomly tossed into a
table with V slots):
N N-1_ N(N-1
uo-1=%; o.@-0,0 =00
N-2 _N(N-1)(N-2),
N N’ ’
N-n+1_ NN-D..N-n+1
Qu() = Q- X MDA =)

Lecture 12 COMPSCI.220.FS.T - 2004 6 %

Qv(3)=Qy(2)

Introduction to Algorithm Analysis March 26, 2004

@ Probability P () @ Open Addressing
The o e . .
o ko of One or More Collisions s with Double Hashing (OADH)
!
Py(n)=1-Qy(n) = I—HL + Better collision resolution policy reducing the likelihood
.o N*(N —n)! of clustering:
n| % |Pys(m) | 10 — to hash the collided key again using a different hash
10| 2.7 | 0.1169 function and
20| 5.5 | 04114 - to use the result of the second hashing as an
30| 8.2 |0.7063 | 05 increment for probing table locations (including
40(11.0|0.8912 wraparound)
50(13.7|0.9704
60164109941 | "¢ 1o 20 30 10 s w0 70
Lecture 12 COMPSCI.220.FS.T - 2004 7 Lecture 12 COMPSCI.220.FS.T - 2004 10 %

© @ [OREEO00RG,
A2 i B\ : i 8 9 cdiress
T-}»‘:/)— open AddreSSIng Q;';i; Fairs | ey value] Haxh code; ke 10 Tabsle swilifress o
g . . . O [20, A] h{20) = 2 2
B with Linear Probing (OALP) vk (15, B] w13 = 1 .
45, C] n{45) = 4 4
+ The simplest collision resolution policy: 197, D £HAT) = 8 &
139, E| M39) = 3 3 Denatile Basiiing
— to successively search for the first empty entry at a BLFl_ ~ #GD-3 - Colisiont .9
lower location OADT T
: - ., example: ,
— if no such entry, then ““wrap around" the table = Sp 7 Eu] EI l;'
* Drawbacks: clustering of keys in the table N=10 Bai AR g bl Bt
bl ™ G A reront A(24) =
LIEIAEE O]
(1] 1 2 3 4 5 a
\ B el 26kl
Lecture 12 COMPSCI.220.FS.T - 2004 8 E Lecture 12 COMPSCI.220.FS.T - 2004 1" E
> =
OFMAMEEDOOCOD
2 ’ [1 2 3 4 5 6 7 8 9 Mub B\ .. .
D ¥ Two More Collision Resolution
. .Thcv_ , 120, A] f(20) =2 2 - _Thc.' , .
of Ancand :]‘" f'l ji“:; =t i of Ancand Technlques
i X - q o
OALP 2. 1 #9) - 3 s Lorenr poiting * Open addressing has a problem when significant
 [BLEl_ AG1) =3 . Collisionl 2140 number of items need to be deleted as logically deleted
example: e ! st _
ne57 items must remain in the table until the table can be
S EOEREEOOCO®O reorganised
N=10 0 1 2 3 1 5 6 7 8 9 X X
e T + Two techniques to attenuate this drawback:
24, (il__'_h_ . 24y =2 Cﬂlllslurﬂ' 1) -— _ Chaining
————————— e 8
- — Hash bucket
ClAEEODOE
o 1 2 3 4 5 (] T 8 L
Lecture 12 COMPSCI.220.FS.T - 2004 9 % Lecture 12 COMPSCI.220.FS.T - 2004 12 %

COMPSCI.220.FS.T - 2004 - Lecture 12 2

Introduction to Algorithm Analysis March 26, 2004

. Chaining and Hash Bucket . Choosing a hash function
of Auckland of Auckland
+ Chaining: all keys collided at a single hash address are + Folding:

placed on a linked list, or chain, started at that address

+ Hash bucket: a big hash table is divided into a number
of small sub-tables, or buckets

— the hush function maps a key into one of the buckets

— the keys are stored in each bucket sequentially in
increasing order

— divide the integer key, K, into sections

- add, subtract, and/or multiply them together for
combining into the final value, h(K)

+ Example:

K=013402122 > sections 013, 402, 122 >
h(K) =013 +402 + 122 =537

Lecture 12 COMPSCI.220.FS.T - 2004 13 % Lecture 12 COMPSCI.220.FS.T - 2004 16 %

.. Universal Classes of Hash Functions e Choosmg a hash function
of Auckland of Auckland
+ Universal hashing: a random choice of the hash function + Middle-squaring:

from a large class of hash functions in order to avoid bad
performance on certain sets of input

« Let K, N, and H be a key set, a size of the range of the
hash function, and a class of functions that map K to 0,...,

— choose a middle section of the integer key, K
— square the chosen section
— use a middle section of the result as h(K)

N-1, respectively. Then H is universal if, for any distinct * Example:
ki € K, itholds that |h e H : h(k) = h(x)|/|H| < 1/N K=013402122 -> middle: 402 >
» H is a universal class if no pair of distinct keys collide 4022=161404 -> middle: h(K) = 6140
under more than 1/ of the functions in the class
Lecture 12 COMPSCI.220.FS.T - 2004 14 E Lecture 12 COMPSCI.220.FS.T - 2004 17 E

. Choosing a hash function . Choosing a hash function
of Auckland of Auckland
+ Four basic methods: division, folding, middle-squaring, * Truncation:
and truncation

. — delete part of the key, K
* Division: — use the remaining digits (bits, characters) as h(K)

— choose a prime number as the table size N

convert keys, K, into integers * Example:
— use the remainder h(K) = K mod N as a hash K:_013402122, o stsdigis k(K S ,122
value of the key K + Notice that truncation does not spread keys uniformly
: : : into the table; thus it is often used in conjunction with
— find a double hashing decrement using the quotient, e bk

AK = max {1, (KIN)mod N}

Lecure 12 COMPSCI.220.FS.T - 2004 15 % Lecture 12 COMPSCI.220.FS.T - 2004 18 %

COMPSCI.220.FS.T - 2004 - Lecture 12 3

Introduction to Algorithm Analysis March 26, 2004

™ Universal Class by Division Efficiency of Search: S,
of Auckland of Auckland
+ Theorem (universal class of hash functions by division): A SC; OALP; OADH;
. .) (N=997) | 3trials 50 trials 50 trials
— Let the size of a key set, K, be a prime number: 010 105/1.04 | 1.06/1.05 | 1.05/1.05
K| =M 025 | 112/1.12 | 1.17/1.16 | 1.15/1.15
— Let the members of K be regarded as the integers 0.50 1.25/1.25 | 1.50/1.46 | 1.39/1.37
{0,....M=1} 075 | 1.37/1.37 | 2.50/2.42 | 1.85/1.85
— For any numbers ae {1,....M-1}; be {0,....M-1} 0.90 | 1.45/1.44 | 5.50/4.94 | 2.56/2.63
let 0.99 1.49/1.49 | 50.5/16.4 | 4.65/4.79
h,, (k)= ((a -k +b)mod M)mOdN Theoretical / average measured experimental results

Lecture 12 COMPSCI.220.FS.T - 2004 19 % Lecture 12 COMPSCI.220.FS.T - 2004 22 %

f@; ?@

A

.. Universal Class by Division Efficiency of Search: U,
* ThenH={h,,: 1<a<Mand0<bh<M}is A SC; OALP; OADH;

(N=997) | 3trials 50 trials 50 trials
0.10 0.10/0.10 | 1.12/1.11 | 1.11/1.11
0.25 0.25/0.21 | 1.39/1.37 | 1.33/1.33

a universal class
+ Proof: [optional: see in the Coursebook...]

> lICaEs ‘ . 0.50 [0.50/0.47 | 2.50/238 | 2.00/2.01
— let M be the next prime number larger than the size 0.75 0.75/0.80 | 8.50/8.36 | 4.00/4.10

of the key set 0.90 | 0.90/0.93 | 50.5/39.1 | 10.0/10.9

— Then choose randomly @ and b such that @ > 0 and 0.99 0.99/0.97 15000/360.9| 100.0/98.5

use the hash function h,, ,(k
(k) Theoretical / average measured experimental results

Lecture 12 (COMPSCI.220.FS.T - 2004 20 E Lecture 12 COMPSCI.220.FS.T - 2004 23 E
> >

ii’* . . %E& Table ADT Representations:
~n Efficiency of Search in Hash Tables e ep
e s, Comparative Performance
+ Load factor A: if a table of size V has exactly M occupied Operation Representation
entries, then A = MA] Sorted array | AVL tree Hash table
+ Average numbers of probe addresses examined for a Initialize ow) o) ow)
successful (S,) and unsuccessful (U,) search: Is full? o) o) o)
%)
OALP:7.<0.7 | OADH:.<0.7 | SC Searchy, | OCog) | €02 ™) o)
nsert O(N) O(log N) o(1)
Sx | 0.5(1+1/(1-1) | (/mIn(1i1-1)) | 1402 Delete o) O(log N) o)
Uy | 0.5(1+(1/(1-1))) 1(1-%) A Enumerate O(N) O(N) O(N log N)**
— ; *) also: Retrieve, Update **)To enumerate a hash table, entries must
SC — separate chaining; 1 may be higher than 1 first be sorle:i?ln asc%nding order of Eeys that takes O(N log I\II) tim:
Lecture 12 COMPSCI.220.FS.T - 2004 il % Lecture 12 COMPSCI.220.FS.T - 2004 24

COMPSCI.220.FS.T - 2004 - Lecture 12 4

