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Binary Search Tree
• BST converts a static binary search into a dynamic binary 

search allowing to efficiently insert and delete data items
• Left-to-right ordering in a tree: for every node x, the 

values of all the keys kleft in the left subtree are smaller 
than the key kparent in x and the values of all the keys 
kright in the right subtree are larger than the key in x:

kparentx
krightkleft

kleft < kparent < kright
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Binary Search Tree
Compare the left−right ordering in a binary search tree to the 
bottom−up ordering in a heap where the key of each parent 
node is greater than or equal to the key of any child node
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Binary Search Tree
• No duplicates! (attach them all to a single item) 
• Basic operations:

– find: find a given search key or detect that it is not 
present in the tree

– insert: insert a node with a given key to the tree if 
it is not found

– findMin: find the minimum key
– findMax: find the maximum key
– remove: remove a node with a given key and 

restore the tree if necessary
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BST: find / insert operations

find is the successful 
binary search

insert creates a new node    
at the point at which   
the unsuccessful 
search stops
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Binary Search Trees: 
findMin / findMax / sort

• Extremely simple: starting at the root, branch repeatedly 
left (findMin) or right (findMax) as long as a 
corresponding child exists

• The root of the tree plays a role of the pivot in quickSort
• As in QuickSort, the recursive traversal of the tree can 

sort the items:
– First visit the left subtree
– Then visit the root
– Then visit the right subtree
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Binary Search Tree: running time 

• Running time for  find, insert, findMin, findMax, sort: 
O(log n) average-case and O(n) worst-case complexity 
(just as in QuickSort)

BST of the depth about log n
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BST of the depth about n
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Binary Search Tree: node removal

• remove is the most complex operation:
– The removal may disconnect parts of the tree
– The reattachment of the tree must maintain the 

binary search tree property
– The reattachment should not make the tree 

unnecessarily deeper as the depth specifies the 
running time of the tree operations 
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BST: how to remove a node

• If the node k to be removed is a leaf, delete it
• If the node k has only one child, remove it after linking 

its child to its parent node 
• Thus, removeMin and removeMax are not 

complex because the affected nodes are either leaves 
or have only one child

Lecture 10 COMPSCI.220.FS.T - 2004 10

BST: how to remove a node

• If the node k to be removed has two children, then 
replace the item in this node with the item with the 
smallest key in the right subtree and remove this latter 
node from the right subtree (Exercise: if possible, how 
can the nodes in the left subtree be used instead? )

• The second removal is very simple as the node with the 
smallest key does not have a left child

• The smallest node is easily found as in findMin
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BST: an Example of Node Removal 
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Average-Case Performance of 
Binary Search Tree Operations

• Internal path length of a binary tree is the sum of the 
depths of its nodes:

IPL = 0 + 1 + 1 + 2 + 2 + 3 + 3 + 3
= 15

• Average internal path length T(n) of the binary search 
trees with n nodes is O(n log n)

depth 0
1
2
3
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Average-Case Performance of 
Binary Search Tree Operations

• If the n-node tree contains the root, the i-node left 
subtree, and the (n−i−1)-node right subtree, then:

T(n) = n − 1 + T(i) + T(n−i−1)
because the root contributes 1 to the path length of 
each of the other n − 1 nodes

• Averaging over all i; 0 ≤ i < n: the same recurrence as 
for QuickSort:

so that T(n) is O(n log n)
( ))1T(...)1T()0T()1()T( 2 −++++−= nnn n
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Average-Case Performance of 
Binary Search Tree Operations

• Therefore, the average complexity of find or insert 
operations is T(n) ⁄ n = O(log n)

• For n2 pairs of random  insert / remove operations, an 
expected depth is O(n0.5)

• In practice, for random input, all operations are about
O(log n) but the worst-case performance can be
O(n)!
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Balanced Trees
• Balancing ensures that the internal path lengths are 

close to the optimal n log n
• The average-case and the worst-case complexity is 

about O(log n) due to their balanced structure 
• But, insert and remove operations take more time on 

average than for the standard binary search trees
– AVL tree (1962: Adelson-Velskii, Landis) 
– Red-black and AA-tree
– B-tree (1972: Bayer, McCreight)
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AVL Tree
• An AVL tree is a binary search tree with the following 

additional balance property:
– for any node in the tree, the height of the left and 

right subtrees can differ by at most 1
– the height of an empty subtree is −1

• The AVL-balance guarantees that the AVL tree of 
height h has at least ch nodes, c > 1, and the 
maximum depth of an n-item tree is about logcn
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AVL Tree 

• Let Sh be the size of the smallest AVL tree of the height
h (it is obvious that S0 = 1, S1 = 2)

• This tree has two subtrees of the height h−1 and h−2, 
respectively, by the balance condition

• It follows that Sh=Sh−1+Sh−2+1, or Sh = Fh+3 − 1
where Fi is the i-th Fibonacci number
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AVL Tree 

• Therefore, for each n-node AVL tree:

• Thus, the worst-case height is at most 44% more than 
the minimum height of the binary trees
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