Introduction to Algorithm Analysis

Lower Bound for Sorting Complexity

University
of Auckland

+ Each algorithm that sorts by comparing only pairs of
elements must use at least

[log,(n!) = n log, n - 1.44n

comparisons in the worst case (that is, for some “worst’
input sequence) and in the average case.

+ Stirling's approximation of the factorial (r2!):

1-2-....n=n!> (%y\/% ~2.5n""%%e™"
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Decision Tree for Sorting » Items

Decision tree for n =3:
* i - acomparison of
a;and g;
~ s ijk-asorted array
(a;9;a)
* n! permutations =
n! leaves
Sorting in descending
order of the numbers
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Decision Tree for Sorting n ltems

+ Decision tree for n=3: an array @ = {a,, a,, a,}

* Example: {35, 10, 17}
— Comparison 1:2 (35> 10) - leftbranch a, > a,
— Comparison 2:3 (10 < 17) = right branch a, < a5
— Comparison 1:3 (35> 17) = leftbranch a, > a;

+ Sorted array 132 > {a,=35, a,=17, a,=10}
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Decision Tree
of Auckland

+ Decision tree of height / has L, < 2 leaves
+ Mathematical induction:
- h = 1: the tree of height 1 has L, < 2" leaves

- h—1 > h: let the tree of height -1 have L, | < 2%-!
leaves; the tree of height 4 consists of a root and two
subtrees at most of height #—1. Thus,

Ly=L,  +L, <271+ 212k
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. Worst-Case Complexity of Sorting
of Auckland

+ The lower bound for the least height / of a decision
tree for sorting by pairwise comparisons which provides
L,=2">n!leavesis

h2>log,(n!)=nlog,n—144n

+ Thus, the worst-case complexity of the sorting is at least
O(n log n)
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. Average-Case Sorting Complexity
of Auckland

+ Each n-element decision tree has an average height at
least log (n!) 2 n log n
+ Let H(D,k) be the sum of heights for all & leaves of a
tree D and H(k) = minp, H(D,k) denote the
minimum sum of heights
+ Math induction to prove that H(k) = & log k&
- k= 1: Obviously, H(1) = 0
© k=1 > k:LetH(m) > m logm,m <k
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ey Average-Case Sorting Complexity
+ The tree D with k leaves contains 2 subtrees, D, with
m, < k leaves and D, with m, < k leaves just under

the root (m, + m, = k):
H(D,k) = k+H(D,,m)+H(D,,m,)

because the link to the

root adds 1 to each
m, leaves| |m,leaves leaf's height
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D, D,

.M. Average-Case Sorting Complexity
of Auckland

The minimum height : H(k) = k + min k{H(ml) +H(m,)}
By the induction assumption :
H(k)<k+ min_k{ml log m, +m, logm, }
The minimumis reached by symmetry for m, =m, =£:
H(k) <k +2(4)log(£) = klogk
Thus the average height of the decision tree with at least 7!

leavesis : (H(n%j <log, nl=nlog,n—1.44n
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Lniversity
of Auckland

+ Data record > Specific key

+ Goal: to find all records with keys matching a
given search key

* Purpose:
- to access information in the record for processing, or
- to update information in the record, or
— to insert a new record or to delete the record
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Types of Search
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« Static search: stored data is not changed

— Given an integer search key X, return either the
position of X in an array A of records or an indication
that it is not present without altering the array A

— If X occurs more than once, return any occurrence

+ Dynamic search: the data may be inserted or
deleted
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&4 ,
. Sequential and Jump Search

+ Sequential search is the only one for an unsorted array

+ Successful / unsuccessful search: the O(n) worst-case
and average-case complexity

+ Jump search O(n0?) in a sorted array A of size n:
T= Fn/ﬂ jumps of length £ to the points B, = min{z-k, n}
and the sequential search among 4 items in a #-th part such that
B, <key<B-1;¢t=1,....,T

Alo]1] [
N 7 7
B 0 k B 1 k B 2 k t B BT
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Jump Search O(n"?5)
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Worst-case complexity:
T(n, k) = % +k
Minimum complexity : for & = Jn
T(n) = min{T(n,k)} = 24/n

because - T(n,k)=—5+1=0 — n =k’
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Binary Search O(log n)
of Auckland

+ Ordered array: key, < key, < ... <key, ,
+ Compare the search key with the record key; at
the middle position i = | (n—1)/2]
- if key = key;,, return i
- if key < key;or key < key;, then it must be in
the 1st or in the 2nd half of the array, respectively

+ Apply the previous two steps to the chosen half of the
array iteratively (repeating halving principle)
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Implementation of Binary Search

begin BinarySearch (an integer array a of size 7, a search key)
low < 0; high «<—n—1
while low < high do
middle «— E( low + high ) / 2]
if o middle | < key then low < middle + 1
else if a middle ] > key then high <« middle — 1
else return middle end if

end while
return ltemNotFound
end BinarySearch
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1 4 8 6 7 A % 10 11 12 13 14 18 i
T 14027 33 42 49 51 53 67 TO 77 81 89 94 95 w0 afi]
Lniversity
of Auckland low = 0 middle = 7 high = 14
N - I L |
Binary
search: low = 0 middle = 3 high = &
detailed oo 6
analysis b4y
low = 4 high = &
middle L]
o /
?1\\“ high = middle = 4;
kev = a] 4 |: return
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Comparison
structure:
the binary

(search) tree

() tree vertex
@ anay position B

= tree branch

L.h  range of positions
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2  Worst-Case Complexity O(log n)
of Binary Search
o Letn=2F—1;k=1,2,..., then the binary tree is
complete (each internal node has 2 children)
+ The tree height is £ —1

+ Each tree level  contains 2/ nodes for / = 0 (the root),
1, ..., k=2, k—1 (the leaves)

» [+ 1 comparisons to find a key of level /
+ The worst case: k = log,(n + 1) comparisons
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@ Average-Case Complexity O(log n)
s of Binary Search
+ Let C;= I+ 1 be the number of comparisons to find
key;of level /; i=0,...,n-1; [=0,..., k1
+ Average number: (= %(Co +C +..+ Cn—l)
« There are 2/ nodes at the level /, so that:
Co+C+..+C, =8, =12+ +k-2*"
+ By math induction: S,_; = 1+ (k=1) 2%, so that

C=L(1+(k-1)2")=2Llog,(n+1)~1
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