
Introduction to Algorith Analysis March 18, 2004

COMPSCI.220.FS.T - 2004 - Lecture 8 1

Lecture 8 COMPSCI.220.FS.T - 2004 1

Algorithm HeapSort
• J. W. J. Williams (1964): a special binary tree called

heap to obtain an O(n log n) worst-case sorting
• Basic steps:

– Convert an array into a heap in linear time O(n)

– Sort the heap in O(n log n) time by deleting n times
the maximum item because each deletion takes the
logarithmic time O(log n)

Lecture 8 COMPSCI.220.FS.T - 2004 2

Complete Binary Tree:
linear array representation

Lecture 8 COMPSCI.220.FS.T - 2004 3

Complete Binary Tree
• A complete binary tree of the height h contains between

2h and 2h+1−1 nodes
• A complete binary tree with the n nodes has the height

log2n
• Node positions are specified by the level-order traversal

(the root position is 1)
• If the node is in the position p then:

– the parent node is in the position  p/2
– the left child is in the position 2p
– the right child is in the position 2p + 1

Lecture 8 COMPSCI.220.FS.T - 2004 4

Binary Heap

• A heap consists of a complete binary tree of
height h with numerical keys in the nodes

• The defining feature of a heap:
the key of each parent node is greater than
or equal to the key of any child node

• The root of the heap has the maximum key

Lecture 8 COMPSCI.220.FS.T - 2004 5

Complete Binary Tree:
linear array representation

Lecture 8 COMPSCI.220.FS.T - 2004 6

Binary Heap: insert a new key

• Heap of k keys heap of k + 1 keys
• Logarithmic time O(log k) to insert a new key:

– Create a new leaf position k + 1 in the heap
– Bubble (or percolate) the new key up by

swapping it with the parent if the latter one is
smaller than the new key

Introduction to Algorith Analysis March 18, 2004

COMPSCI.220.FS.T - 2004 - Lecture 8 2

Lecture 8 COMPSCI.220.FS.T - 2004 7

Binary Heap:
an example of
inserting a key

Lecture 8 COMPSCI.220.FS.T - 2004 8

Binary Heap:
delete the maximum key

• Heap of k keys heap of k − 1 keys
• Logarithmic time O(log k) to delete the root

(or maximum) key:
– Remove the root key
– Delete the leaf position k and move its key into the

root
– Bubble (percolate) the root key down by swapping

with the largest child if the latter one is greater

Lecture 8 COMPSCI.220.FS.T - 2004 9

Binary Heap:
an example of
deleting the
maximum key

Lecture 8 COMPSCI.220.FS.T - 2004 10

Linear Time Heap Construction
• n insertions take O(n log n) time.
• Alternative O(n) procedure uses a recursively

defined heap structure:

– form recursively the left and right subheaps
– percolate the root down to establish the heap order

everywhere

Left subheap

Root

Right subheap

Lecture 8 COMPSCI.220.FS.T - 2004 11

Heapifying Recursion

70

65 50

20 2 91 25

31 15 8

L
e
a
v
e
s

recursive scan

7065

50

20 2

91

2531

15

8

h=1

h=2

h=3

h=4

s1 s2

s3

s4
Root

Lecture 8 COMPSCI.220.FS.T - 2004 12

Time to build a heap

()12)T(
0)0T(;)1T(2)T(

1 −−⋅=→

=⋅+−=
+ hch

hchh
h

Introduction to Algorith Analysis March 18, 2004

COMPSCI.220.FS.T - 2004 - Lecture 8 3

Lecture 8 COMPSCI.220.FS.T - 2004 13

Linear time heap construction:
non-recursive procedure

• Nodes are percolated down in reverse level order
• When the node p is processed, its descendants will

have been already processed.
• Leaves need not to be percolated down.
• Worst-case time T(h) for building a heap of height h:

T(h) = 2T(h−1) + ch T(h) = O(2h)
– Form two subheaps of height h−1
– Percolate the root down a path of length at most h

Lecture 8 COMPSCI.220.FS.T - 2004 14

Time to build a heap
• A heap of the height h has n = 2h−1…2h − 1 nodes so

that the height of the heap with n items: h = log2n
• Thus, T(h) = O(2h) yields the linear time T(n) = O(n)

1)1(

1)(

0

0

+−=

−−=−

∫

∫

N
N

x

N
N

x

eNdxxe

NedxexN Two integral relationships
helping to derive the
above (see Slide 12) and
the like discrete formulas

Lecture 8 COMPSCI.220.FS.T - 2004 15

Time to build a heap

1212)0T(2)1T(2
22)1T(2)2T(2

...
)1(2)2T(2)1T(2

)1T(2)T(

111

212

2

⋅=⋅+=

⋅+=

−⋅+−=−

⋅+−=

−−−

−−−

cc
c

hchh
hchh

hhhh

hhh

()
()12

22)1(2)2(...2221)T(
1

01221

−−⋅=

⋅+⋅−+⋅−++⋅+⋅⋅=
+

−−

hc
hhhch

h

hh

Lecture 8 COMPSCI.220.FS.T - 2004 16

Steps of HeapSort

215202550831706591h

2
8

10/9

7091
5091

2031
8H

E
A
P
I
F
Y

15312591220506570a

9/8
8/7

7/6
6/5

5/4
4/3

3/2
2/1

1/0
p/i

Lecture 8 COMPSCI.220.FS.T - 2004 17

Steps of HeapSort

15252820503165h8

1520
1531

91

91

1565R.h.
7020252831506515a2

1520252831506570H9

250
270Restore

the heap
(R.h.)

1520255083170652a1

Lecture 8 COMPSCI.220.FS.T - 2004 18

Steps of HeapSort

2815252031h6

1520

91

91

1531R.h.
7065502820253115a4

152820253150h7

1525
1550R.h.

7065252820503115a3

Introduction to Algorith Analysis March 18, 2004

COMPSCI.220.FS.T - 2004 - Lecture 8 4

Lecture 8 COMPSCI.220.FS.T - 2004 19

Steps of HeapSort

821520h4

815

91

91

820R. h.
7065503125152208a6

81522025h5

225R. h.
7065503181525202a5

Lecture 8 COMPSCI.220.FS.T - 2004 20

Steps of HeapSort

917065503125201582a9

28h2

91

91

28R. h.
7065503125201582a8

2815h3

815R. h.
7065503125202158a7

s o r t e d a r r a y

