Introduction to Algorith Analysis

R o
Algorithm HeapSort
of Auckland
« J. W. J. Williams (1964): a special binary tree called
heap to obtain an O(n log ) worst-case sorting
+ Basic steps:

— Convert an array into a heap in linear time O()

— Sort the heap in O(n log n) time by deleting » times
the maximum item because each deletion takes the
logarithmic time O(log n)

Lecture 8 COMPSCI.220.FS.T - 2004 1 %

@ Complete Binary Tree:

Lniversity

i |linear array representation
(A 1

Lecture 8 COMPSCI.220.FS.T - 2004 2 E

Complete Binary Tree

of Auckland

+ A complete binary tree of the height / contains between
2k and 2/+1—1 nodes

+ A complete binary tree with the » nodes has the height
log,n

+ Node positions are specified by the level-order traversal
(the root position is 1)

+ If the node is in the position p then:
— the parent node is in the position | p/2]
— the left  child is in the position 2p
— theright child is in the position 2p + 1
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Binary Heap

of Auckland
+ A heap consists of a complete binary tree of
height / with numerical keys in the nodes
+ The defining feature of a heap:

the key of each parent node is greater than
or equal to the key of any child node

+ The root of the heap has the maximum key
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. Binary Heap: insert a new key

of Auckland

+ Heap of k keys > heap of k + 1 keys
* Logarithmic time O( log k ) to insert a new key:
— Create a new leaf position £ + 1 in the heap

— Bubble (or percolate) the new key up by
swapping it with the parent if the latter one is
smaller than the new key

Lecture 8 COMPSCI.220.FS.T - 2004 6 %




Introduction to Algorith Analysis March 18, 2004

%ﬁaﬁ

The
University
of Auckland

~  Linear Time Heap Construction

University
of Auckland

* ninsertions take O(n log n) time.
+ Alternative O(n) procedure uses a recursively

defined heap structure: @

Binary Heap:
an example of
inserting a key

s as 6o s 000 ( Left subheap ) (Rignt subheap)
_[ofes]zo] 1] & [so2s]zo] 15] 2[75] - — form recursively the left and right subheaps
25 :: mm———— -=3 — percolate the root down to establish the heap order
e everywhere
|o1]7s] 70] 31]6s [s0f2s|20] 15] 2 s - o
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wa Binary Heap: @
he : he Heapifying Recursion
delete the maximum key Bt pifying

* Heap of k keys = heap of k — 1 keys

+ Logarithmic time O( log k& ) to delete the root
(or maximum) key:
— Remove the root key

h=1

— Delete the leaf position £ and move its key into the e N8
root
— Bubble (percolate) the root key down by swapping h=4
with the largest child if the latter one is greater recursive scan
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Binary Heap:
an example of
deleting the

Time to restore the heap by
percolating the root down

maximum key

T(h)=2T(h-1)+c-h;  T(0)=0
> Tthy=c-2" -n-1)

- [7olss]so 1] 8 | 2 J25]20] 9] .
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‘ Linear time heap construction: @
e ap e Steps of HeapSort
of Auckiand non-recursive procedure of Auckland
+ Nodes are percolated down in reverse level order p/ 1 N2/ 3/ 14/ |5/ |6/ |7/ |8/ |9/, |10/
+  When the node p is processed, its descendants will N -
have been already processed. ‘H' woee Ov AU 2 ol)as sl s
+ Leaves need not to be percolated down. E 2
+ Worst-case time T(/) for building a heap of height 4: Q 31 20
T(h) = 2T(h-1) + ch > T(h) = O(2") [ 91 50
— Form two subheaps of height #—1 $ 91 70
— Percolate the root down a path of length at most / n o1 les 70 311 8 150125020 151 2
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Time to build a heap Steps of HeapSort
of Auckland of Auckland
+ A heap of the height /2 has n = 2A-1...2"— 1 nodes so a, | 26570 |31 | 8 |5 |25|2 | 15| ®m
that the height of the heap with » items: 4 =[log,n | e 2
¢ Thus, T(h) = O(2") yields the linear time T(r) = O(n) (Rh.) 50 2
T Hy, |70| 65|50 |31 | 8 | 2 |[25|20] 15
I(N—x)e"dx =e" — N =1 Two integral relationships 4 [15]165]50 |31 |8 |2 |25|20|nm |®
0 helping to derive the Rh. 165 15
N above (see Slide 12) and 31 15
_[xexdx =(N-1e" +1 the like discrete formulas 20 15
0 hy | 65|31 |50 [20| 8 | 2 |25 15
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Time to build a heap Steps of HeapSort
of Auckland of Auckland
T(h)=2T(h=D+c-k a, [15)31]50][20] 8] 225w |m]|m
2T(h-1)=22T(h—2)+2c-(h—1) Rh. | 50 5
......... 25 15
oh-2 T(Z) — il T(l) 127200 h, 50 | 31 | 25 | 20 | 8 2 15
2" T(1)=2"T(0)+2""¢c-1=2""¢c-1 a 15 3 2 W Fl2iM & N
Rh. | 31| 15
T(hy=c-(1-27 +2:2"2 .+ (h=2)- 22 +(h—1)-2' +1-2°) 20 15
o2 —h1) he [31]20)25]15| 8 | 2
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Steps of HeapSort
sity
of Auckland
ag | 2 (20 |25[15| 8 | 3 | 68| &% | M |9
R.h. | 25 2
hy | 25|20 2 |15 | 8
ag | 8 (20| 2 [ 15| 2 | 31 |60 | 86 | 70 | 8
Rh |2 | 8
15
h, |20 |15 2
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Steps of HeapSort
¥
of Auckland
a, | 8 |15| 2|2 |2% | 3 68| 86 |7 | @
Rh|15] 8
h, | 15| 8 | 2
a, | 2 | 8 % N M| %G| N | A
R.h.| 8§ 2
h, | 8 | 2
ay 2 8 2| % 3 B | & | N 8
sorted array
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