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Algorithm HeapSort
• J. W. J. Williams (1964): a special binary tree called 

heap to obtain an O(n log n) worst-case sorting
• Basic steps:

– Convert an array into a heap in linear time O(n)

– Sort the heap in O(n log n) time by deleting n times 
the maximum item because each deletion takes the 
logarithmic time O(log n)
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Complete Binary Tree:
linear array representation
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Complete Binary Tree
• A complete binary tree of the height h contains between 

2h and 2h+1−1 nodes
• A complete binary tree with the n nodes has the height  

log2n
• Node positions are specified by the level-order traversal 

(the root position is 1)
• If the node is in the position p then:  

– the parent node is in the position  p/2
– the left      child  is in the position  2p
– the right    child  is in the position  2p + 1

Lecture 8 COMPSCI.220.FS.T - 2004 4

Binary Heap

• A heap consists of a complete binary tree of 
height h with numerical keys in the nodes

• The defining feature of a heap: 
the key of each parent node is greater than
or equal to the key of any child node 

• The root of the heap has the maximum key
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Complete Binary Tree:
linear array representation
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Binary Heap: insert a new key

• Heap of k keys heap of k + 1 keys 
• Logarithmic time O( log k ) to insert a new key: 

– Create a new leaf position k + 1 in the heap
– Bubble (or percolate) the new key up by 

swapping it with the parent if the latter one is 
smaller than the new key
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Binary Heap: 
an example of 
inserting a key
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Binary Heap: 
delete the maximum key

• Heap of k keys heap of k − 1 keys
• Logarithmic time O( log k ) to delete the root  

(or maximum) key:
– Remove the root key
– Delete the leaf position k and move its key into the 

root
– Bubble (percolate) the root key down by swapping 

with the largest child if the latter one is greater 
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Binary Heap: 
an example  of 
deleting the 
maximum key
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Linear Time Heap Construction
• n insertions take O(n log n) time.
• Alternative O(n) procedure uses a recursively 

defined heap structure:

– form recursively the left and right subheaps
– percolate the root down to establish the heap order 

everywhere

Left subheap

Root

Right subheap
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Heapifying Recursion
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Time to build a heap
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Linear time heap construction: 
non-recursive procedure

• Nodes are percolated down in reverse level order
• When the node p is processed, its descendants will 

have been already processed.
• Leaves need not to be percolated down.
• Worst-case time T(h) for building a heap of height h: 

T(h) = 2T(h−1) + ch T(h) = O(2h)
– Form two subheaps of height h−1
– Percolate the root down a path of length at most h
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Time to build a heap
• A heap of the height h has n = 2h−1…2h − 1 nodes so 

that the height of the heap with n items: h = log2n
• Thus, T(h) = O(2h) yields the linear time T(n) = O(n)
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Time to build a heap
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Steps of HeapSort
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Steps of HeapSort
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Steps of HeapSort
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Steps of HeapSort
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Steps of HeapSort
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