Introduction to Algorithm Analysis

=

.= Some Informal Definitions
of Auckland
+ algorithm - a system of uniquely determined rules
that specify successive steps in solving a problem
* program - a clearly specified series of computer
instructions implementing the algorithm
+ elementary operation - a computer instruction
executed in a single time unit (computing step)
* running (computing) time of an algorithm - a number
of its computing steps (elementary operations)

March 2, 2004

Lecture 1 COMPSCI.220.81.T - 2004 1 %

Efficiency of Algorithms

Lniversity
of Auckland

How to compare algorithms / programs:

* by domain of definition — legal inputs

+ by correctness — correct output for each legal
input (in fact, you need a formal proof!)

* by basic resources — maximum or average
requirements: computing time and memory space

Lecture 1 COMPSCI.220.81.T - 2004 3 E

©
Lniversity
of Auckland

Mathematical Induction

Instead of directly proving a relationship 7{(r), math
induction proves the following conditions:
1. Base condition : 7(n,.), €.9., T(0) or T(1)

2. Inductive hypothesis: for every n > ny, if T(n—1)
holds for n—1, then 71(») holds for »; or

2. Strong induction: if 7(k) holds for k=ny,,...,n—1,
then T(r) holds for n

Lecture 1 COMPSCI.220.81.T - 2004 5 %

COMPSCI.220.S1.T - 2004 - Lecture 1

Turing Machine
of Auckland

= s |
— control device: finite states O
— moving read / write head:
+ read / write a symbol from / to an infinite tape
+ move left / right or stay

Lecture 1 COMPSCI.220.81.T - 2004 2 %

W Simple Example 1: F(n) = 2"

+ Implicit formula: F(n) =2F(n — 1); F(0) =1, or
Fn)=Fn-1)+Fn-1);n=12,...
+ 1,2,4,8,16, 32, 64, 128, 256, 512, 1024, ...
+ Explicit formula with F(1) = 1: F(n) = 2"
+ Proof with math induction:
— Base condition: F(0) =20=1
— Induction hypothesis: F(n) = 2F(n—1)=2-2""1=2"

Lecture 1 COMPSCI.220.81.T - 2004 4 E

. Example 2: Fibonacci Numbers
of Auckland

+ 1,1,2,3,5,8, 13,21, 34,55, 89, 144, 233, ...

« Implicit formula: F(n) = F(n — 1) + F(n — 2)

+ Analysis: let's derive the explicit formula for ()
- characteristic equation: assume F(n)=c¢’; 1<¢<2 =
c@r=corltcg?= @=pH = ¢ = (1£5)/2
— general solution: linear combination F(1)=c, (4" +c, "

~F()=FQ)=1 = F(m = (=5) - L(=5)

Lecture 1 COMPSCI.220.81.T - 2004 6 %

Introduction to Algorithm Analysis March 2, 2004

® L

>3

. L] " Dﬁ " L]
. Example 2: Euclid’s Algorithm Euclid’s GCD Algorithm
of Auckland of Auckland
+ The greatest common divisor, K = GCD(n,m) is « Euclid’s analysis: if k divides both m and , then
the greatest positive integer such that it divides it divides their difference (n — m if n > m):
both two positive integers m and n GCD(n, m) = GCD(n—m, m)

? LT GUTIRR DOl el i * kdivides every difference when the subtraction

integers from 1 to the minimum of m and n is repeated up to A times until n — Am < m:

+ Is it practicable to use such algorithm to find GCD(n, m) = GCD(n mod m, m)
GCD(3 787 776 332, 3 555 684 776) or even where n mod r’n or n modulo m is the rer;1inder of the
GCD(9245,7515)? division of by m (in Java: n%m, e.g. 13%>5 = 3)

Lecture 1 COMPSCI.220.81.T - 2004 7 E Lecture 1 COMPSCI.220.81. - 2004 8 E

e Euclid’s GCD Algorithm . How to Run Faster / Save Memory?
of Auckland of Auckland
GCD(9245,7515) =5 + (RF) Save results of computations that could be
9245 mod 7515 = 1730 | 7515 mod 1730 = 595 reused later for the same data
- - + (RF) Tabulate functions of one or two integer
1730 mod 595 =540 | 595 mod 540 = 55 arguments with relatively small ranges
540 mod 55 = 45 55 mod 45 =10 * (SM) Be careful with recursive computations (to
_ _ _ be sure that the stack is not growing too fast!)
45mod 10=5 10mod 5 =0=GCD=5 * (SM) Free in due time and reuse the allocated

8 steps vs 7515 steps of the brute-force algorithm! memory

Lecture 1 COMPSCI.220.81.T - 2004 9 E Lecture 1 COMPSCI.220.81.T - 2004 10 E

7’%5&

Linear Space Increase
of Auckland

void recursiveFunc(...) { ...; recursiveFunc(...); ...

L4

The
University
of Auckland

Exponential Space/Time Increase
Stack

fibonacci(1)=1
Stack fibonacci(2)=1
fibonacci(3)=2 0o
fibonacci(3)=2 B
X n-3
ﬂbonacm(n)l:l -
1.6187/4/5 a3
n-—4

Lecture 1 COMPSCI.220.81.T - 2004

Lecture 1 COMPSCI.220.81.T - 2004 12 %

COMPSCI.220.S1.T - 2004 - Lecture 1 2

