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What an iPod, a Flock of Birds, and Q
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Moore’s Law holds that computing power doubles every 18

months. Most of the wonders of the computer age can be FUTURE o Gomrgring
attributed directly to this law. Alas, its days are numbered. ,’ &
What then? l[

(4]

In this talk I will argue that the years ahead will usher in

the era of the “Algorithm”, a notion that might prove just as e I
disruptive in this century as the revolution in the physical ’? j‘fr
sciences was in the last century. I will discuss why algorithms f:l 1

. . /3 3 f
are even more powerful than customarily believed but why s
they will not unleash their true potential until they become | Soon.my friends.you will ook aa childs

homework — and see nothing to eat.™

fully-fledged scientific tools and not just problem-solvers.

Bernard Chazelle is Eugene Higgins Professor of Computer Science at Princeton University.

New Zealand Institute of
Mathematics & its Applications

SLT | Lecture Theatre * Ground Floor Building 303 * 38 Princes Street (by Albert Park)
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DI,
@ Notation Conventions

* T(n): the “running time” for an algorithm having an n-
sized input, e.g., T(14) = 33, T(n) = 2n + 5

* g(n): the formula for computing the running time for an
algorithm having n-sized input, e.g., g(n) =2n+ §

» O(n): a set of formulas that bound the running time for
an algorithm as n gets very large

* f(n): the formula that represents how quickly the running
time grows as n gets very large
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Relative growth: g(n) =f(”)f(5)

Input size n

Function f(n) 5 25 125 625
Constant 1 1 1 1 1
Logarithm log:n | 1 3 4
Linear n 1 5 25 125
“nlogn” nlogsn | 1 10 75 500
Quadratic n? 1] 25(5%) | 625(5% 15,625 (59)
Cubic n’ 1 | 125 (5%)| 15,625 (5%) | 1,953,125 (5°)
Exponential iz 1| 220106 | 2120103 2620 210187
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“Big-Oh” O(...) : Formal Definition

Let f(n) and g(n) be nonnegative-valued functions defined
on nonnegative integers »

The function g(n) i1s O(f(n)) (read: g(n) is Big Oh of f(n))
iff there exists a positive real constant ¢ and a positive
integer n,, such that g(n) =< cf(n) for all n > n,

— Notation “iff’ is an abbreviation of “if and only if’
— Example 1.9 (p.15): g(n) = 100log,,n Is O(n)
<=g(n)<nifn>238o0rgn)<03nifn>1000
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g(n) Is O(f(n)), or g(n) = O(f(n))

A T(n) f(n) n

g(n) is O(f(n)) if: -

a constant ¢ >0 exists such s - e '
that cf(n) grows faster = ~ |
than g(n) for all n > n,

To prove that some function |/ .-~
g(n)is O(f(n)) meansto  , T LT LT 47
show for ¢ and f such
constants ¢ and n, exist

The constants ¢ and n, are ~ n>®,=238): g)<( f(n)=n)
Interdependent n>(n,=1000): g(n)<( f(n)=03 n )
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FAPA A
@ “Big-Oh” O(...) : Informal Meaning

* If g(n) is O(f(n)), an algorithm with running time
g(n) runs asymptotically (i.e. for large »), at

most as fast, to within a constant factor, as an
algorithm with running time £(n)

O(f(n)) specifies an asymptotic upper bound, i.e. g(n)
for large » may approach closer and closer to cf(n)

Notation g(n) = O(f(in)) means actually g(n)EO0(f(n)),

.e. g(n) is a member of the set O(f(n)) of functions
increasing with the same or lesser rate as n — o
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Big Omega €2(...)

* The function g(n) Is Q(f(n)) iff there exists a
positive real constant ¢ and a positive integer n,
such that g(n) > cf(n) for all n > n,

€2(...) is opposite to O(...) and specifies an asymptotic
lower bound: if g(n) is Q(f(n)) then f(n) is O(g(n))
Example 1: 5n2 is Q(n) < 5n2>5nforn>1

Example 2: 0.01% is Q(log n) <= 0.01n > 0.5log,»
forn > 100
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Big Theta ©(...)

* The function g(n) is ©(f(n)) iff there exists two
positive real constants ¢, and ¢, and a positive

integer n, such that ¢, fin) = g(n) = c,f(n) for
alln>n,

g(n)1s O(f(n)) =
g(n)i1s O(f(n)) AND f(n) is O(g(n))

EX.: the same rate of increase for g(n) = n + 51°5 and f(n) = n
= n < n+5n%><6nforn>1
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[FTHE UNIVERSITY OF AUCKLANG

Comparisons: Two Crucial Ideas

» Exact running time function is unimportant since it
can be multiplied by an arbitrary positive constant.

» Two functions are compared asymptotically, for
large », and not near the origin

— If the constants ¢ involved are very large, then the
asymptotical behaviour is of no practical interest!

— To prove that g(n) is not O(f(n)), Q(f(n)), or ©
(f(n)) we have to show that the desired constants do
not exist, I.e. lead to a contradiction
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Example 1.12, p.17

Linear function g(n) = an + b, a > 0, is O(n)
To prove, we form a chain of inequalities:
gm)y<an+|b|<gn)<(a+|b|) -nforaln=>1

Do not write O(2n) or O(an + b) as this means still O(#)!
O(n) - running time:
T(n)=3n+1 T(n)=10% +n
T(n)=50+10"3n T(n)=10n+ 1
Remember that “Big-Oh” describes an “asymptotic behaviour’
for large problem sizes
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Example 1.13, p.17

Polynomial P,(n) = a, n* +a,_n*'+...+a,n+a,, a, > 0,
s O(n") <= Py(n) < (a; Hay_ |+ ... +ag|) n*; n=1

Do not write O(P, (7)) as this means still O(»*)!

_(_k) running time:

(e

(e

T(n) = 3n? + 5n + 1 is O(n?) s it also O(n3)?
I'(n)=10-%n3+ 108 n? + 30 is O(n>)

['(n) =103 nd + 1000n + 1 is O(n?)

T(n) = P(n) = O(n™), m > k; O(n~); Qn™);, m<k
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SIS
@ Example 1.14, p.17

Exponential g(n) = 27 is O( 27). 27tk =2k- 27 for all n
Exponential g(n) =m"*is O(I*), [ =m > 1.
mhhk < [nthk=[k. [n forall n, k
A “brute-force” search for the best combination of »
Interdependent binary decisions by exhausting all the 2~

possible combinations has exponential time complexity!

Therefore, try to find a more efficient way of solving
the decision problem with » = 20 ... 30
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SIS
@ Example 1.15, p.17

» Logarithmic function g(n) = log,, n has the same rate
of increase as log, n because

log, n=1og, 2 -log,n forall n,m>0

Do not write O(log,, ) as this means still O(log »)!

You will find later that the most efficient search for data in
an ordered array has logarithmic time complexity

Lecture 3 COMPSCI 220 - AP G Gimel'farb 15

[~



