Tuesday |17th March ¢ 6 pm Lecture

wocg THE UNIVERSITY
OF AUCKLAND

What an iPod, a Flock of Birds, and Q
DNA have in common... Wj\

Professor
Bernard Chazelle

Princeton University

Moore’s Law holds that computing power doubles every 18

months. Most of the wonders of the computer age can be FUTURE o Gomrgring
attributed directly to this law. Alas, its days are numbered. ,’ &
What then? l[

(4]

In this talk I will argue that the years ahead will usher in

the era of the “Algorithm”, a notion that might prove just as e I
disruptive in this century as the revolution in the physical ’? j‘fr
sciences was in the last century. I will discuss why algorithms f:l 1

. . /3 3 f
are even more powerful than customarily believed but why s
they will not unleash their true potential until they become | Soon.my friends.you will ook aa childs

homework — and see nothing to eat.™

fully-fledged scientific tools and not just problem-solvers.

Bernard Chazelle is Eugene Higgins Professor of Computer Science at Princeton University.

New Zealand Institute of
Mathematics & its Applications

SLT | Lecture Theatre * Ground Floor Building 303 * 38 Princes Street (by Albert Park)

Lecture 3 COMPSCI 220 - AP G Gimel'farb 1

Lecture 3

CS 220
Complexity Measures

COMPSCI 220 - AP G Gimel'farb

[~

DI,
@ Notation Conventions

* T(n): the “running time” for an algorithm having an n-
sized input, e.g., T(14) = 33, T(n) = 2n + 5

* g(n): the formula for computing the running time for an
algorithm having n-sized input, e.g., g(n) =2n+ §

» O(n): a set of formulas that bound the running time for
an algorithm as n gets very large

* f(n): the formula that represents how quickly the running
time grows as n gets very large

Lecture 3 COMPSCI 220 - AP G Gimel'farb 3

[~

I'(n) x<n

T(n) < n?
T(n) < n’
T(n) o« n*

I'(n) o 2"

Lecture 3

”(n) C C constant

”(n) X lOg N logarithmic

linear

T(n) < nlogn

Typical Complexity Curves

T(n) 2n 4
A

quadratic
cubic
polynomial
. log n
exponential
T T T T T T T T i
0O 100 200 300 400 500 600 700 800 900 n
COMPSCI 220 - AP G Gimel'farb 4

[~

Relative growth: g(n) =f(”)f(5)

Input size n

Function f(n) 5 25 125 625
Constant 1 1 1 1 1
Logarithm log:n | 1 3 4
Linear n 1 5 25 125
“nlogn” nlogsn | 1 10 75 500
Quadratic n? 1] 25(5%) | 625(5% 15,625 (59)
Cubic n’ 1 | 125 (5%)| 15,625 (5%) | 1,953,125 (5°)
Exponential iz 1| 220106 | 2120103 2620 210187

Lecture 3

COMPSCI 220 - AP G Gimel'farb

[~

“Big-Oh” O(...) : Formal Definition

Let f(n) and g(n) be nonnegative-valued functions defined
on nonnegative integers »

The function g(n) i1s O(f(n)) (read: g(n) is Big Oh of f(n))
iff there exists a positive real constant ¢ and a positive
integer n,, such that g(n) =< cf(n) for all n > n,

— Notation “iff’ is an abbreviation of “if and only if’
— Example 1.9 (p.15): g(n) = 100log,,n Is O(n)
<=g(n)<nifn>238o0rgn)<03nifn>1000

Lecture 3 COMPSCI 220 - AP G Gimel'farb 6

[~

g(n) Is O(f(n)), or g(n) = O(f(n))

A T(n) f(n) n

g(n) is O(f(n)) if: -

a constant ¢ >0 exists such s - e '
that cf(n) grows faster = ~ |
than g(n) for all n > n,

To prove that some function |/ .-~
g(n)is O(f(n)) meansto , T LT LT 47
show for ¢ and f such
constants ¢ and n, exist

The constants ¢ and n, are ~ n>®,=238): g)<(f(n)=n)
Interdependent n>(n,=1000): g(n)<(f(n)=03 n)

Lecture 3 COMPSCI 220 - AP G Gimel'farb 7 E

200 —

n,

[
800 1000 1200 n

g(n) =100 -log ,n

FAPA A
@ “Big-Oh” O(...) : Informal Meaning

* If g(n) is O(f(n)), an algorithm with running time
g(n) runs asymptotically (i.e. for large »), at

most as fast, to within a constant factor, as an
algorithm with running time £(n)

O(f(n)) specifies an asymptotic upper bound, i.e. g(n)
for large » may approach closer and closer to cf(n)

Notation g(n) = O(f(in)) means actually g(n)EO0(f(n)),

.e. g(n) is a member of the set O(f(n)) of functions
increasing with the same or lesser rate as n — o

Lecture 3 COMPSCI 220 - AP G Gimel'farb 8

[~

Big Omega €2(...)

* The function g(n) Is Q(f(n)) iff there exists a
positive real constant ¢ and a positive integer n,
such that g(n) > cf(n) for all n > n,

€2(...) is opposite to O(...) and specifies an asymptotic
lower bound: if g(n) is Q(f(n)) then f(n) is O(g(n))
Example 1: 5n2 is Q(n) < 5n2>5nforn>1

Example 2: 0.01% is Q(log n) <= 0.01n > 0.5log,»
forn > 100

Lecture 3 COMPSCI 220 - AP G Gimel'farb 9

[~

Big Theta ©(...)

* The function g(n) is ©(f(n)) iff there exists two
positive real constants ¢, and ¢, and a positive

integer n, such that ¢, fin) = g(n) = c,f(n) for
alln>n,

g(n)1s O(f(n)) =
g(n)i1s O(f(n)) AND f(n) is O(g(n))

EX.: the same rate of increase for g(n) = n + 51°5 and f(n) = n
= n < n+5n%><6nforn>1

Lecture 3 COMPSCI 220 - AP G Gimel'farb 10

[~

[FTHE UNIVERSITY OF AUCKLANG

Comparisons: Two Crucial Ideas

» Exact running time function is unimportant since it
can be multiplied by an arbitrary positive constant.

» Two functions are compared asymptotically, for
large », and not near the origin

— If the constants ¢ involved are very large, then the
asymptotical behaviour is of no practical interest!

— To prove that g(n) is not O(f(n)), Q(f(n)), or ©
(f(n)) we have to show that the desired constants do
not exist, I.e. lead to a contradiction

Lecture 3 COMPSCI 220 - AP G Gimel'farb 11

[~

Example 1.12, p.17

Linear function g(n) = an + b, a > 0, is O(n)
To prove, we form a chain of inequalities:
gm)y<an+|b|<gn)<(a+|b|) -nforaln=>1

Do not write O(2n) or O(an + b) as this means still O(#)!
O(n) - running time:
T(n)=3n+1 T(n)=10% +n
T(n)=50+10"3n T(n)=10n+ 1
Remember that “Big-Oh” describes an “asymptotic behaviour’
for large problem sizes

Lecture 3 COMPSCI 220 - AP G Gimel'farb 12

[~

Example 1.13, p.17

Polynomial P,(n) = a, n* +a,_n*'+...+a,n+a,, a, > 0,
s O(n") <= Py(n) < (a; Hay_ |+ ... +ag|) n*; n=1

Do not write O(P, (7)) as this means still O(»*)!

_(_k) running time:

(e

(e

T(n) = 3n? + 5n + 1 is O(n?) s it also O(n3)?
I'(n)=10-%n3+ 108 n? + 30 is O(n>)

['(n) =103 nd + 1000n + 1 is O(n?)

T(n) = P(n) = O(n™), m > k; O(n~); Qn™);, m<k

Lecture 3 COMPSCI 220 - AP G Gimel'farb 13

[~

SIS
@ Example 1.14, p.17

Exponential g(n) = 27 is O(27). 27tk =2k- 27 for all n
Exponential g(n) =m"*is O(I*), [=m > 1.
mhhk < [nthk=[k. [n forall n, k
A “brute-force” search for the best combination of »
Interdependent binary decisions by exhausting all the 2~

possible combinations has exponential time complexity!

Therefore, try to find a more efficient way of solving
the decision problem with » = 20 ... 30

Lecture 3 COMPSCI 220 - AP G Gimel'farb 14

[~

SIS
@ Example 1.15, p.17

» Logarithmic function g(n) = log,, n has the same rate
of increase as log, n because

log, n=1og, 2 -log,n forall n,m>0

Do not write O(log,,) as this means still O(log »)!

You will find later that the most efficient search for data in
an ordered array has logarithmic time complexity

Lecture 3 COMPSCI 220 - AP G Gimel'farb 15

[~

