27
@ Lower Bound for Sorting Complexity

- Theorem 2.30: Any algorithm that sorts by comparing only
pairs of elements must use at least

[log,(n!)| =nlog, n — 1.44n

comparisons in the worst case (that is, for some “worst’
input sequence) and in the average case

— Stirling's approximation of the factorial (72!):

n
05 -
1-2-...:.n=n = (%) A2 = 2.5n" " e™
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Decision Tree for Sorting n ltems

Decision tree for n =3:

* j:j - acomparison of
a;and a;

" o jjk-asorted array
(a;a;a;)

 n! permutations =
n! leaves

Sorting in descending

Lecture 9

order of the numbers
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SR
@ Decision Tree for Sorting n ltems

» Decision tree for n = 3: an array A={a,, a,, a,}
» Example: {a,=35, a,=10, a;=17}
— Comparison 1:2 (35> 10) — left branch a, > a,
— Comparison 2:3 (10 < 17) — right branch a, < a,
— Comparison 1:3 (35> 17) — leftbranch a, > a;

» Sorted array 132 — {a,=35, a;=17, a,=10}
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Decision Tree

Lemma: Decision tree of height 4 has L, < 2" leaves

Proof by mathematical induction:
- h=1:any tree of height 1 has L, < 2! leaves
- h-1— I
- Let any tree of height 2 — 1 have L,_, < 2! leaves

- Any tree of height / consists of a root and two subtrees of
height at most 2 — 1

- Therefore, L, = L, |+ L, ; <21+ 2-1= 2"
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Worst-Case Complexity of Sorting

- Theorem 2.32: The worst-case complexity of sorting
n Iitems by pairwise comparisons is €2(z log n)

- Proof:

— Any decision tree of height / has at most 27 leaves (see
Lemma, Slide 4)

— The least height / such that L, = 2 = n! leaves is

hzlog,(n!)=nlog,n-1.44n
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[FTHE UNIVERSITY OF AUCKLANG

Bucket Sort (Exercise 2.6.2)

Let all integers to sort in an array a of size »n be in the

2.

Lecture 9

fixed range [1,....q,..]
1.

Introduce a counter array ¢ of size ¢, and set its
entries initially to zero

Scan through a to accumulate in the counters #{i];
i=0,...,9,...—1, how many times each item i + 1

IS found N a

Loop through 0 =< i =g¢,..—1 and output #[7]
copies of integer i + 1 at each step
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Bucket Sort (Exercise 2.6.2)

Worst- and average-case time complexity of bucket
sort is ©(n) provided that ¢, Is fixed

qd...x + 11 €lementary operations to first set ¢ to

zero and then count how many times ¢#[7] each
itemi + 1isfoundin a

d...x + 11 €lementary operations to successively

output the sorted array a by repeating #[i] times
eachentryi + 1

Theorem 2.30 does not hold under additional constraints!

Lecture 9 COMPSCI 220 - AP G. Gimel'farb 7

[~



SIS
@ Data Search: Efficiency

» Data record <& Specific key

* Goal: to find all records with keys matching a
given search key

 Purpose:
— to access information in the record for processing, or

— to update information in the record, or
— to insert a new record or to delete the record
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27272
@ Types of Search

 Static search: unalterable databases

— Given a data structure D of records and a search
key k, either return the record associated with £ in D
or indicate that & is not found, without altering D

— If £ occurs more than once, return any occurrence
- Examples: searching a phone directory or a dictionary

 Dynamic search: alterable databases
— Records may be inserted or removed
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Static Sequential Search (SSS)

- Lemma 33: Both successful and unsuccessful SSS
have worst- and average-case complexity ©(n)

— Proof: the unsuccessful search explores each of #
keys, so the worst- and average-case time is ©O(n);

the successful search examines 7 keys in the worst
case and n/2 on the average, which is still ®(#)

* Sequential search is the only option for an unsorted array
and for linked-list data structures of records
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@ Static Binary Search O(log »)

+ Ordered array: key, < key, <... <key ,

» Compare the search key with the record key: at
the middle position i = | (n—1)/2 |
- if key = key,, return i

- if key < key. or key < key,, then it must be in
the 1st or in the 2nd half of the array, respectively

* Apply the previous two steps to the chosen half of the
array iteratively (repeating halving principle)
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Pseudocode of Binary Search

begin BinarySearch (an integer array a of size n, a search key)
low < 0; high < n -1
while low < high do
middle < |(low + high) /2]
if a[ middle ] < key then low « middle + 1
else if a[ middle | > key then high < middle — 1
else return middle end if

end while
return ltemNotFound
end BinarySearch
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Comparison &m o= @G BE
structure: ~ /\  /\ [\ [\

the binary
(search) tree o

15
@ tree vertex

[E] array position = ()

— tree branch
l..h  range of positions
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@ Worst-Case Complexity ©(log n)
= of Binary Search

o letn=25-1;k=1,2,..., then the binary tree
is complete (each internal node has 2 children)
— The tree height is k£ —1 since the tree is balanced

— Each tree level [ contains 2/ nodes for / = 0 (the
root), 1, ..., k=2, k-1 (the leaves)

» [+ 1 comparisons to find a key of level /

» The worst case: k = log,(n + 1) comparisons
so that the time complexity is ©(log n)
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Average-Case Complexity ©(log n)
of Binary Search

lemma 3.9: The average-case complexity of binary
search in a balanced binary tree is ®(log n)

Proof: 4 = [log,(n + 1)] — 1 is the depth of the tree

At least half of the nodes in the tree have the depth
atleastk -1

The average depth over all nodes is at least 4/2
which is Q(log n)

Expected search time for an arbitrary binary search tree
IS equal to the average tree height ©(log »)
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@ Interpolation Search

* Improvement of binary search if it is possible to guess
where the desired key sits
— [Example: the search for C or X in a phone directory

— Practical if the sorted keys are almost uniformly distributed over
their range
[+71

* BS: the middle position m = lTJ =1+[0.5(r - )]

* |S: the predicted position
k- A[l]

Alr]- A[l]

m=l+[p(r—l)]sl+ (r—l)]
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@ Dynamic Binary Tree Search

o Static binary search is converted into a dynamic
binary tree search by allowing for insertion and
deletion of data records

* Binary tree search makes actual use of the
binary search tree data structure

— The data structure is constructed by linking data
records

— Any node of a binary search tree may be removed
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