
Lecture 8 COMPSCI 220 - AP G. Gimel'farb 1

Algorithm HeapSort

• J. W. J. Williams (1964): a special binary tree called
heap to obtain an O(n log n) worst-case sorting

• Basic steps:
– Convert an array into a heap in linear time O(n)

– Sort the heap in O(n log n) time by deleting n times
the maximum item because each deletion takes the
logarithmic time O(log n)
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Complete Binary Tree:
 linear array representation
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Complete Binary Tree

• A complete binary tree of the height h contains between
2h and 2h+1−1 nodes

• A complete binary tree with the n nodes has the height
log2n

• Node positions are specified by the level-order traversal
(the root position is 1)

• If the node is in the position p then:
– the parent node is in the position   p/2
– the left      child  is in the position  2p
– the right    child  is in the position  2p + 1
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Binary Heap

• A heap consists of a complete binary tree of
height h with numerical keys in the nodes

• The defining feature of a heap:

          the key of each parent node is greater than
or equal to the key of any child node

• The root of the heap has the maximum key
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Binary Heap:
 linear array representation
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Binary Heap: insert a new key

• Heap of k keys  into a heap of k + 1 keys

• Logarithmic time O( log k ) to insert a new key:

– Create a new leaf position k + 1  in the heap

– Bubble (or percolate) the new key up by
swapping it with the parent if the parent key is
smaller than the new key
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Binary Heap:
an example of
inserting a key
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Binary Heap:
delete the maximum key

• Heap of k keys  into a heap of k − 1 keys

• Logarithmic time O( log k ) to delete the root
(or maximum) key:
– Remove the root key
– Delete the leaf position k and move its key into the

root

– Bubble (percolate) the root key down by swapping
it with the largest child if that child is greater
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Binary Heap:
an example  of
deleting the
maximum key
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Linear Time Heap Construction

• Do not use n insertions → O(n log n) time!
• Alternative O(n) procedure uses a recursively

defined heap structure:

– form recursively the left and right subheaps
– percolate the root down to establish the heap order

everywhere
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Non-recursive Heap Building

• Nodes percolate down in reverse level order
– Each node p is processed after its descendants

have been already processed
– Leaves need not be percolated down

• Worst-case time T(h) to build a heap of height h:
T(h) = 2T(h−1) + ch → T(h) = O(2h)

– Form two subheaps of height at most h − 1
– Percolate the root down a path of length at most h
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Time to Build a Heap
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Worst-case Time Complexity

• A heap of n nodes is of height h = log2n so
that  2h ≤ n ≤ 2h+1−1

• Therefore, the time for converting an array into a
heap is linear: T(h) = O(2h), or T(n) = O(n)

• To sort a heap, the maximum element is deleted
n times, so that the worst-case time complexity
of HeapSort is O( n log n )
– Each deletion takes logarithmic time O( log n)
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Steps of HeapSort
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Steps of HeapSort
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Steps of HeapSort
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Steps of HeapSort
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Steps of HeapSort
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