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Typical Complexity Curves

T(n) ∝ log n  logarithmic

T(n) ∝ n        linear

T(n) ∝ n log n
T(n) ∝ n2          quadratic

T(n) ∝ n3          cubic

T(n) ∝ nk          polynomial

T(n) ∝ 2n          exponential
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Relative growth: g(n) = f(n)
f(5)

2620 ≈101872120 ≈1036220 ≈10612nExponential
1,953,125  (59)15,625 (56)125 (53)1n3Cubic

15,625 (56)625 (54)25 (52)1n2Quadratic
50075101n log5n“n log n”
1252551nLinear
4321log5nLogarithm
11111Constant

625125255Function f(n)
Input size n
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“Big-Oh” O(…) : Formal Definition

Let f(n) and g(n) be nonnegative-valued functions defined
on nonnegative integers n

The function g(n) is O(f) (read: g(n) is Big Oh of f(n)) iff
there exists a positive real constant c and a positive
integer n0 such that g(n) ≤ cf(n) for all n > n0

– Notation “iff” is an abbreviation of “if and only if”

– Example 1.9 (p.15): g(n) = 100log10n is O(n)
   ⇐ g(n) < n if n > 238 or g(n) < 0.3n if n > 1000
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g(n) is O(f(n)), or g(n) = O(f(n))

g(n) is O(f(n)) if:
 a constant c > 0 exists such

that cf(n) grows faster
than g(n) for all n > n0

To prove that some function
g(n) is O(f(n)) means to
show for g and f such
constants c and n0 exist

The constants c and n0 are
interdependent
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“Big-Oh” O(…) : Informal Meaning

• If g(n) is O(f(n)), an algorithm with running time
g(n) runs asymptotically (i.e. for large n), at
most as fast, to within a constant factor, as an
algorithm with running time f(n)
O(f(n)) specifies an asymptotic upper bound, i.e. g(n)

for large n may approach closer and closer to cf(n)
Notation g(n) = O(f(n)) means actually g(n)∈O(f(n)),

i.e. g(n) is a member of the set O(f(n)) of functions
increasing with the same or lesser rate if n → ∞



Lecture 3 COMPSCI 220 - AP G Gimel'farb 6

Big Omega Ω(…)

• The function g(n) is Ω(f(n)) iff there exists a
positive real constant c and a positive integer n0
such that g(n) ≥ cf(n) for all n > n0
 Ω(…) is opposite to O(…) and specifies an asymptotic

lower bound: if g(n) is Ω(f(n)) then f(n) is O(g(n))
 Example 1: 5n2 is Ω(n) ⇐ 5n2 ≥ 5n for n ≥ 1
 Example 2: 0.01n is Ω(log n) ⇐ 0.01n ≥ 0.5log10n

for n ≥ 100
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Big Theta Θ(…)

• The function g(n) is Θ(f(n)) iff there exists two
positive real constants c1 and c2 and a positive
integer n0 such that c1 f(n)  ≤  g(n)  ≤  c2 f(n) for
all n > n0
 g(n) is Θ(f(n)) ⇒                  
                  g(n) is O(f(n)) AND f(n) is O(g(n))
Ex.: the same rate of increase for g(n) = n + 5n0.5 and f(n) = n
⇒   n  ≤  n + 5n0.5 ≤ 6n for n > 1
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Comparisons: Two Crucial Ideas

• Exact running time function is unimportant since it
can be multiplied by an arbitrary positive constant.

• Two functions are compared asymptotically, for
large n, and not near the origin
– If the constants c involved are very large, then the

asymptotical behaviour is of no practical interest!
– To prove that g(n) is not O(f(n)), Ω(f(n)), or Θ

(f(n)) we have to show that the desired constants do
not exist, i.e. lead to a contradiction
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Example 1.12, p.17

         Linear function g(n) = an + b; a > 0, is O(n)
  To prove, we form a chain of inequalities:

g(n) ≤ a n + |b| ≤ g(n) ≤ (a + |b|) · n for all n ≥ 1

Do not write O(2n) or O(an + b) as this means still O(n)!
O(n) - running time:
          T(n) = 3n + 1             T(n) = 108  + n
          T(n) = 50 + 10– 8 n     T(n) = 106 n + 1
Remember that “Big-Oh” describes an “asymptotic behaviour”

for large problem sizes
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Example 1.13, p.17

Polynomial Pk(n) = ak nk +ak−1nk-1+…+a1n+a0; ak > 0,
is O(nk) ⇐ Pk(n) ≤ (ak +|ak−1|+ … + |a0|) nk ; n≥1

Do not write O(Pk(n)) as this means still O(nk)!
O(nk) - running time:
• T(n) = 3n2 + 5n + 1 is O(n2)             Is it also O(n3)?
• T(n) = 10−8 n3 + 108 n2 + 30 is O(n3)
• T(n) = 10−8 n8 + 1000n + 1 is O(n8)
T(n) = Pk(n) ⇒ O(nm), m ≥ k;  Θ(nk);  Ω(nm); m ≤ k
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Example 1.14, p.17

Exponential g(n) = 2n+k is O( 2n):   2n+k = 2k · 2n for all n
Exponential  g(n) = mn+k is O( ln),  l ≥ m > 1:

mn+k ≤  ln+k = lk · ln  for all  n, k
A “brute-force” search for the best combination of n

interdependent binary decisions by exhausting all the 2n

possible combinations has exponential time complexity!
Therefore, try to find a more efficient way of solving
the decision problem with n ≥ 20 … 30
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Example 1.15, p.17

• Logarithmic function g(n) = logm n has the same rate
of increase as log2 n because

logm n = logm 2 · log2 n   for all  n, m > 0

Do not write O(logm n) as this means still O(log n)!

You will find later that the most efficient search for data in
an ordered array has logarithmic time complexity


