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Lower Bound for Sorting Complexity

- Theorem 2.30: Any algorithm that sorts by comparing only
pairs of elements must use at least

[log,(n!)] = n log, n — 1.44n

comparisons in the worst case (that is, for some “worst’
input sequence) and in the average case

— Stirling's approximation of the factorial (r2!):
n
12n=n = () V2m = 2.50m 0%
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Decision tree for n =3:
* i:j - a comparison of
a;and q;
* ijk - a sorted array
(a; a; ai)
* n! permutations =
n! leaves
Sorting in descending
order of the numbers
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Decision Tree for Sorting » Items

* Decision tree for n = 3: an array A={a,, a,, a}
* Example: {a,=35, a,=10, a,=17}
— Comparison 1:2 (35 > 10) — leftbranch a, > a,
— Comparison 2:3 (10 < 17) — right branch @, < a;
— Comparison 1:3 (35> 17) — leftbranch a, > a,
+ Sorted array 132 — {a,=35, a;=17, a,=10}
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Decision Tree

Lemma: Decision tree of height /2 has L, < 2" leaves

Proof by mathematical induction:
- h = 1: any tree of height 1 has L, < 2! leaves
- h-1—h:
- Letany tree of height 2 — 1 have L,_, < 2-! leaves

- Any tree of height A consists of a root and two subtrees of
height at most # — 1

- Therefore, L, = L, + L, <2#1+2m-1=24
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| Worst-Case Complexity of Sorting

- Theorem 2.32: The worst-case complexity of sorting
n items by pairwise comparisons is Q(# log n)
- Proof:

— Any decision tree of height / has at most 2 leaves (see
Lemma, Slide 4)

— The least height /2 such that L, = 2" = n! leaves is

hzlog,(n!)=nlog,n-144n
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Bucket Sort (Exercise 2.6.2)

Let all integers to sort in an array « of size n be in the
fixed range [1,...,q ]
1. Introduce a counter array ¢ of size g,,,,, and set its
entries initially to zero
2. Scan through a to accumulate in the counters [i];
i=0,...,¢mx—1, how many times each item 7 + 1
is found in a
3. Loop through 0 < i = g,,,.—1 and output #[]
copies of integer i + 1 at each step
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Bucket Sort (Exercise 2.6.2) Data Search: Efficiency

Worst- and average-case time complexity of bucket + Datarecord <> Specific key
sort is ©(n) provided that ¢, is fixed

dmax + 1 €lementary operations to first set # to

zero and then count how many times ¢[i] each

+ Goal: to find all records with keys matching a
given search key

item i + 1 is found in @ * Purpose:
= Gumax + 1 €lementary operations to successively — to access information in the record for processing, or
output the sorted array a by repeating #[] times _ to undate information in the record. or
eachentryi + 1 _ P '
Theorem 2.30 does not hold under additional constraints! ~ toinsert a new record or to delete the record
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Types of Search i @ Static Sequential Search (SSS)
+ Static search: unalterable databases - Lemma33: Both successful and unsuccessful SSS
— Given a data structure D of records and a search have worst- and average-case complexity ©()
key k, either return the record associated with & in D - Proof: the unsuccessful search explores each of n
or indicate that k is not found, without altering D keys, so the worst- and average-case time is ©(n);
— If & occurs more than once, return any occurrence the successful search examines n keys in the worst
- Examples: searching a phone directory or a dictionary case and n/2 on the average, which is still © ()
R Dynamic search: alterable databases . Sequentlial search is the only option for an unsorted array
and for linked-list data structures of records
— Records may be inserted or removed
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Static Binary Search O(log n) Pseudocode of Binary Search

+ Ordered array: key, < key, < ... <key, , begin BinarySearch (an integer array a of size 1, a search key)
. low < 0; high < n-1
+ Compare the search key with the record key; at while low < high do
the middle position i = | (n—1)/2] middle « [(low + high) /2|
- if key = key,, retum i if o[ middle | < key then low < middle + 1

else if o[ middle ] > key then high < middle — 1

- if key < key; or key < key;, then it must be in else return middle end if

the 1st or in the 2nd half of the array, respectively end while
+ Apply the previous two steps to the chosen half of the return ItemNotFound
array iteratively (repeating halving principle) end BinarySearch
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) 1 2 3 4 5 6 73 8 9 10 11 12 13 14 15 1
7 14 27 33 42 49 51 53 67 70 77 81 89 94 95 99 afli]
low =0 middle = 7 high = 15
7 14 27 33 42 49 51 ’v/‘
Binary
search: 1ow =0 middic =3 nigh =6
detailed X o
analysis YA
low = 4 high = 6
middle 5
9 ,.'/"
?10\\ = high = middle = 4:
key = al 4 |: return
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Comparison
structure:
the binary

(search) tree

tree vertex

[E array position =
— tree branch

I.h  range of positions
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@ Worst-Case Complexity ©(log 7)
. of Binary Search

s Letn=2%-1;k=1,2,..., then the binary tree
is complete (each internal node has 2 children)
— The tree height is & —1 since the tree is balanced
— Each tree level / contains 2/ nodes for / = 0 (the

root), 1, ..., k — 2, k -1 (the leaves)

e [+1 comparlsons to find a key of level /

* The worst case: k = log,(n + 1) comparisons
so that the time complexity is ©(log )
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@ Average-Case Complexity ©(log n)
- of Binary Search

Lemma 38: The average-case complexity of binary
search in a balanced binary tree is ©(log )

Proof: & = [log,(n + 1)] — 1 is the depth of the tree

At least half of the nodes in the tree have the depth
atleastk - 1

The average depth over all nodes is at least /2
which is Q(log n)
Expected search time for an arbitrary binary search tree
is equal to the average tree height ©(log n)
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Interpolation Search

+ Improvement of binary search if it is possible to guess
where the desired key sits
— Example: the search for C or X in a phone directory

- Practical if the sorted keys are almost uniformly distributed over
their range
l+7r

+ BS: the middle position m = TJ +[0.5(-- D]
+ IS: the predicted position

m=1+[p(r-D]=1+ [ oAl (r —)l

Alr]- Al
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Dynamic Binary Tree Search

+ Static binary search is converted into a dynamic
binary tree search by allowing for insertion and
deletion of data records

* Binary tree search makes actual use of the
binary search tree data structure

— The data structure is constructed by linking data
records

— Any node of a binary search tree may be removed
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