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A. (Algorithm Analysis)

1. The expressions below give the processing timeT (n) of an algorithm for solving a problem of size
n. Give dominant terms and Big-Oh complexities of these algorithms.

Hint: The dominant term has the steepest increase inn.

Expression Dominant term O(. . .)

50n2 + n1.5 +
√

n 50n2 O(n2)

(n + 2n2)(5n log2 n + n3) 2n5 O(n5)

n2 log2 n+n(log2 n)2 +n · log2 n2 n2 log2 n O(n2 log2 n)

n(log4 n)+n(log2 n)+n(log10 n) n(log2 n) O(n(log2 n))

26 + n6 + 6n 6n O(6n)

1000n + 0.0005n2 0.0005n2 O(n2)

[6 marks]

2. Prove thatT (n) = a0 + a1n + a2n
2 + a3n

3 is O(n3) wherea0, a1, a2 anda3 are positive real
constants.

Hint: f(n) is O(g(n)) if there exists a realc > 0 and an integern0 > 0 such thatf(n) ≤ c · g(n),
for all n ≥ n0.

It is obvious thatT (n) ≤ a0n
3 + a1n

3 + a2n
3 + a3n

3 = (a0 + a1 + a2 + a3)n3. If
n > 0 thenT (n) ≤ cn3 wherec = a0 + a1 + a2 + a3.

[5 marks]

CONTINUED
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3. Consider the recurrence relationt(n) = 4 · t(dn
4 e) + n, with t(1) = 0.

(a) Calculatet(n) for n = 2, 3, 4.

t(2) = 2, t(3) = 3, t(4) = 4

[3 marks]

(b) Assume thatn = 4k and derive a closed formula fort(n) by telescoping. What is the Big-Oh
complexity?

We replacen by 4k and we gett(4k) = 4t(4k−1) + 4k. We divide the equation
by 4k and apply telescoping:

t(4k)
4k = t(4k−1)

4k−1 + 1
t(4k−1)
4k−1 = t(4k−2)

4k−2 + 1
· · · · · · · · ·
t(4)
4 = t(1)

1 + 1

It follows thatt(4k) = k ·4k = n ·log4n. The Big-Oh complexity isO(n ·log2n).

[4 marks]

(c) Apply the “divide and conquer theorem” to obtain the Big-Oh complexity oft(n). Hint: The
recurrence relationT (n) = aT (n/b) + cnk, wherea ≥ 1, b ≥ 2, c > 0, andk ≥ 0 are
constants, has the following solution:

T (n) =





O(nlogb a), if bk < a

O(nk log n), if bk = a

O(nk) otherwise.

In our example we have thata = 4, b = 4 andk = 1. This means thatbk = a and it
follows that the Big-Oh complexity oft(n) is O(n · log2n).

[1 mark]

CONTINUED
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4. For the following three code segments, find the simplest and slowest-growing functiong such that
the time complexity of the segment isO(g) in the worst case. In all three segments, S represents a
sequence of statements in which there are no loops depending onn.

(a) for (int i = 0; i · i < n; i + +)
S

O(
√

n)

(b) for (int i = 0;
√

i < n; i + +)
S

O(n2)

(c) int k = 1;
for (int i = 0; i < n; i + +)
k∗ = 2;
for (int i = 0; i < k; i + +)
S

O(2n)

[6 marks]

5. The running time of algorithm A and B is given byf(n) = (log2 n)2 + n! andg(n) = 2n +
n2, respectively. For which input sizes (positive integers) is algorithm B faster than algorithm A,
assuming that both algorithms run on identical hardware?

n 1 2 3 4 5
A 1 3 < 8 28 < 125
B 3 8 17 32 57

Forn ≥ 5 algorithm B is better than algorithm A.

[5 marks]

CONTINUED
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6. Convert the following binary search tree into an AVL-tree of height 2:

50
/ \

20 90
/ \

10 40
/

30

40
/ \

20 50
/ \ \

10 30 90

[5 marks]

7. Convert the following array[50, 30, 35, 40, 32, 25, 18, 31, 2] into a minimum heap (tree or array is
fine).

[2,18,25,30,32,35,50,31,40]

[5 marks]

CONTINUED
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B. (Graph Algorithms)

8. For each of the following, draw an example or explain why no such example exists:

[5 marks]

(a) A graph with4 vertices where the distance between every pair of vertices is1.

(b) A DAG whose underlying graph is connected but not a tree.

(c) A connected graph with100 vertices and98 edges.

IMPOSSIBLE -e ≥ n− 1 = 99 for connected graphs

(d) A graph with diameter4 and girth6.

(e) A digraph with4 nodes and14 arcs.

IMPOSSIBLE -n(n− 1) = (4)(3) = 12 is maximum

CONTINUED
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9. Consider the digraphG with nodes0, . . . , 6 whose adjacency matrix representation is given below.



0 1 0 0 1 1 0
1 0 0 1 0 0 0
1 0 0 0 0 0 1
1 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0




(a) Write down the adjacency lists representation ofG.

[1 mark]

0: 1 4 5
1: 0 3
2: 0 6
3: 0 5
4: 5
5:
6: 5

(b) Suppose that BFS is run onG, with the rule that whenever there is a choice of node to visit,
the one with smallest label is chosen. List all tree arcs, forward arcs, back arcs, and cross arcs
of G. [4 marks]

Tree: (0, 1)(0, 4)(0, 5)(1, 3)(2, 6). Forward: none. Back:(1, 0)(3, 0). Cross:
(2, 0)(3, 5)(4, 5)(6, 5).

CONTINUED
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10. (a) Perform the DFS algorithm on the digraphG whose adjacency lists representation is given
below. List the seen and done times for each node.

0: 2
1: 0
2: 0 1
3: 4 5 6
4: 5
5: 3 4 6
6: 1 2

Node: 0 1 2 3 4 5 6
Seen: 0 2 1 6 7 8 9
Done: 5 3 4 13 12 11 10

(b) List the strong components ofG. Show your work.

Answer is{0, 1, 2}, {3, 4, 5}, {6}. Obtained by running DFS onGr choosing root as
white node with latest done time above. Roots are3, 6, 0 in that order.

[5 marks]

CONTINUED
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11. Answer each question TRUE or FALSE. Correct answers receive 1 mark; incorrect ones receive
-0.5 marks.

(a) If BFS is run on a graph, and there is a cross edge, then the graph has a cycle.

TRUE

(b) If a graph has a cycle, then when BFS is run, there will be a cross edge.

TRUE

(c) When DFS is run on a graph, every edge is a cross edge or a tree edge.

FALSE

(d) If DFS is run on a digraph and(v, w) is a cross arc, thenv is seen beforew.

FALSE

(e) If DFS is run on a digraph andv is visited beforew, thenw finishes processing beforev.

FALSE

[5 marks]

CONTINUED
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