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Section A: Algorithm Analysis

1. A modified mergesort separates an array a of size n = 3m (with integer m = log3 n; m > 0)
into three successive parts of equal size 3m−1 each, recursively sorts each part separately, and
merges the three sorted parts into a desired sorted array:
public static void modifiedMergesort( int a[] ) {

modifiedMergesort( a, 0, a.length - 1 );
}
private static void modifiedMergesort( int a[], int frst, int last ) {

if ( frst < last ) {
int size = (last - frst) / 3;
int lst1 = frst + size;
int lst2 = lst1 + size;
modifiedMergesort( a, frst, lst1); // Sorting the first part
modifiedMergesort( a, lst1 + 1, lst2 );// Sorting the second part
modifiedMegresort( a, lst2 + 1, last );// Sorting the third part
merge( a, frst, lst1, lst2, last ); // Merging the sorted parts

}
}

Assuming the merging step involves 2cn elementary operations where c > 0 is a constant scale
factor, write down the basic recurrence for the processing time T (n) of this algorithm and derive a
closed-form formula for T (n) by “telescoping”. [10 marks]

The basic recurrence for the processing time T (n) of this algorithm is T (n) = 3T (n/3)+2cn,
i.e. T (n)

n
= T (n/3)

n/3
+2c, or T (3m)

3m = 3m−1

3m−1 +2c. “Telescoping” of the recurrence is as follows:

T (3m)
3m = T (3m−1)

3m−1 + 2c
T (3m−1)

3m−1 = T (3m−2)

3m−2 + 2c
T (3m−2)

3m−2 = T (3m−3)

3m−3 + 2c
. . . . . . . . .

T (32)

32 = T (3)
3

+ 2c
T (3)

3
= T (1)

1
+ 2c

After summing the left-hand sides and right-hand sides of these equalities and reducing the
same terms in the sums, the close-form formula for T (n) is T (3m)

3m = T (1)
1

+ 2cm, or
T (3m) = 3mT (1) + 3m2cm, or T (n) = nT (1) + 2cn log3 n.

The equivalent solution telescopes the recurrence T (3m) = 3T (3m−1) + 2c3m:

T (3m) = 3T (3m−1) + 2c3m

3T (3m−1) = 32T (3m−2) + 2c3m

32T (3m−2) = 33T (3m−3) + 2c3m

. . . . . . . . .
3m−2T (32) = 3m−1T (3) + 2c3m

3m−1T (3) = 3mT (1) + 2c3m

After summing the left-hand sides and right-hand sides of these equalities and reducing the
same terms in the sums, the close-form formula for T (n) is just the same: T (3m) = 3mT (1)+

2cm3m, or T (n) = nT (1) + 2cn log3 n. Both the solutions are admissible.
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2. Prove that the height hn of a complete binary tree with n nodes is at most blog2 nc where bzc
denotes the closest integer smaller than or equal to a real number z. Use this fact to prove that
insertion of a new node into a heap of n elements takes logarithmic, O(log n), time. [10 marks]

A complete binary tree is a binary tree which is completely filled at all levels
except, possibly, the bottom level, which is filled from left to right with no missing
nodes. Depending on the number of nodes at the bottom level, a complete tree of
height hn contains between 2h and 2h+1 − 1 nodes, so that 2hn ≤ n < 2hn+1, or
hn ≤ log2 n < hn + 1, that is, hn ≤ blog2 nc.

Heaps are complete binary trees. Insertion of a new node into a heap adds one
more node to the heap of n elements. First, a new, (n + 1)-st leaf position is created
and the new node with its associated key is placed in this leaf. If the inserted key
preserves the heap order, the insertion is completed. Othewise, the new key has to
swap with its parent. This process of bubbling, or percolating up the key is repeated
toward the root until the heap order is restored. Therefore, there are at most hn swaps,
so that the running time is at most O(log n).

3. Mark each statement in the following table true (T) or false (F) in the third column. For each correct
answer you score +2, for each incorrect one−1, and for each question not answered, 0. [10 marks]

Statement T or F?
1 The worst-case time complexity of static binary search is O(n log n) F
2 Insertion sort has quadratic average-case time complexity T
3 Quickselect has logarithmic worst-case time complexity F
4 The time for removing a node from a binary search tree of height h is O(h) T
5 Search time in a hash table is completely independent of its load factor F
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Section B: Graph algorithms

4. Mark each question true (T) or false (F). For each correct answer you score +1, for each incorrect
one −1, and for each question not answered, 0. [20 marks]

(a) If Kruskal’s algorithm is run on a graph that is not connected, it terminates after finding a
minimum weight spanning forest.

TRUE

(b) We can always find a topological order for a DAG by outputting the nodes in order of increas-
ing “seen” time.

FALSE

(c) There is a linear-time algorithm for determining whether a graph is 2-colourable.

TRUE

(d) If DFS is run on a digraph and no tree arcs are created, then the graph has no arcs at all.

FALSE

(e) Let G be a digraph and (v, w) ∈ E(G). If DFS is run on G and v is seen before w, then w is
a descendant of v in the DFS forest.

TRUE

(f) If DFS is run on a graph, there can be no cross edges.

TRUE

(g) Floyd’s algorithm is preferable to running Dijkstra’s algorithm n times, if we are solving the
all-pairs shortest path problem on a class of large dense digraphs.

TRUE

(h) There can be no arcs between different strongly connected components of a digraph.
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FALSE

(i) Consider the DAG G on nodes 0, 1, . . . , n, whose arcs are precisely those of the form (i, j)
with i < j. Then 0, 1, . . . , n is a topological order for G.

TRUE

(j) The graph with nodes 0, . . . , 4 and edges {i, j} whenever i 6= j has girth 4.

FALSE

(k) The graph with nodes 0, . . . , 5 and edges {i, j} whenever i + j = 5 or i = 0, j = 2 will have
precisely two trees in its BFS forest for any choice of roots.

TRUE

(l) To solve the all-pairs shortest path problem in an unweighted digraph, Floyd’s algorithm is
always preferable to using BFS from each node.

FALSE

(m) Breadth-first search creates only tree or cross edges when run on a graph.

TRUE

(n) Kruskal’s algorithm solves the MST problem in linear time.

FALSE

(o) If DFS is run on a digraph and v is visited before w, then w finishes processing before v.

FALSE

(p) Priority-first search using a priority queue is an efficient way to simulate BFS and DFS, as
well as being the basis for Dijkstra’s algorithm and Prim’s algorithm.

FALSE
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(q) Suppose that G is a connected graph on which we have run BFS, and {v, w} ∈ E(G) is a
cross edge. Then v and w are at the same distance from the root of the BFS tree.

FALSE

(r) Suppose that we run DFS on a digraph G and keep the seen, done timestamps but no other
information about the search forest created. Then we can still always distinguish cross arcs
from forward arcs.

TRUE

(s) A good way to compute the girth of a graph is to run DFS from each node in turn and return
the length of the smallest cycle found (a cycle is found when we see a back arc).

FALSE

(t) The Bellman-Ford algorithm solves the SSSP in time O(ne) for any weighted digraph.

TRUE

5. Consider the weighted graph G whose weighted adjacency matrix is shown below and answer the
following questions. No working is required to be shown. Be careful — no partial credit will be
given for wrong answers. 

0 5 9 3 ∞
5 0 4 ∞ 3.5
9 4 0 5 1
3 ∞ 5 0 3
∞ 3.5 1 3 0


(a) First consider the SSSP. Fill in the entries of the distance vector computed by each iteration

of Dijkstra’s algorithm when run on G with source node 0. The initial values have been filled
in. [5 marks]

Iteration Node 0 Node 1 Node 2 Node 3 Node 4
0 0 ∞ ∞ ∞ ∞
1 0 5 9 3 ∞
2 0 5 8 3 6
3 0 5 8 3 6
4 0 5 7 3 6
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(b) Now consider the MST problem. List, in the order that they are added to the tree, the edges
used in the minimum spanning tree of G found by Prim’s algorithm. Write each edge in the
form {a, b} where a, b are the vertices at the endpoints and a < b. [5 marks]

The solution starting from the root 2: {2, 4}, {3, 4}, {0, 3}, {1, 4}.

The solutiuon starting from the root 0: {0, 3}, {3, 4}, {2, 4}, {1, 4}.

Both solutions as well as those started from the other nodes are valid.

Section C: Automata Theory and Grammars

6. Consider the language L consisting of all strings over the alphabet {a, b} whose last two letters are
both a. a) Write explicitly the language L defined above. b) Construct (by drawing the diagram) a
three state DFA M that recognises L. c) Determine whether M is minimal. [10 marks]

a) L = {xaa | x ∈ {a, b}∗}.
b) The DFA that recognises L is

c) M is minimal: q0 6≡0 q2, q1 6≡0 q2 and q0 6≡1 q1 because δ(q0, a) = q1 6= q2 =
δ(q1, a).
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7. Mark each statement in the following table true (T) or false (F) in the third column. The first entry
(0) is an example. For each correct answer you score 2 marks. [10 marks]

0 every language accepted by an NFA is infinite false
1 every finite language is accepted by some DFA true
2 every NFA is a DFA false
3 the language {anbm|n, m > 0} is not accepted by any NFA false
4 it is algorithmically decidable whether a DFA M accepts finitely many strings true
5 it is not algorithmically decidable whether an NFA N accepts finitely many strings false

8. Enumerate all steps for constructing a DFA accepting exactly the language denoted by the regular
expression: (ab)∗ + a. [10 marks]

Construct NFAs N1 and N2 accepting the languages {a} and {b}, respectively.
Construct an NFA N3 for the concatenation of L(N1) and L(N2) obtaining the lan-
guage {ab}.
Construct an NFA N4 for the Kleene closure of L(N3) so obtaining {ab}∗.
Construct an NFA N5 for the union of L(N4) and L(N2) obtaining the language
{ab}∗ ∪ {a}.
Transform N5 into an equivalent DFA M .

9. Show that there is an algorithm which receives as input a DFA M over the alphabet {a, b} and de-
cides whether L(M) = {ε, a, b} or L(M) 6= {ε, a, b}. Clearly state all results you use. [10 marks]

It is known that there is an algorithm deciding whether two DFAs accept the
same language. The language L = {ε, a, b} is accepted by the DFA M ′:

So, we can apply the above algorithm to the DFAs M and M ′ to decide whether
L(M) = L(M ′), that is, L(M) = {ε, a, b}.
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Additional work page
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