Tutorial-1
How to calculate Running time of an algorithm?

We can calculate the running time of an agorithm reliably by running the
Implementation of the algorithm on acomputer.

Alternatively we can calculate the running time by using a technique
cdled algorithm analysis. We can estimate an algorithm'’ s performance
by counting the number of basic operations required by the algorithm to
process an input of a certain size.

Basic Operation: The time to complete a basic operation does not
depend on the particular values of its operands. So it takes a constant
amount of time.

Examples. Arithmetic operation (addition, subtraction, multiplication,
division), Boolean operation (AND, OR, NOT), Comparison operation,
Module operation, Branch operation etc.

Input Size: It is the number of input processed by the algorithm.
Example: For sorting algorithm the input size is measured by the number
of records to be sorted.

Growth Rate: The growth rate of an algorithm is the rate at which the
running time (cost) of the algorithm grows as the size of the input grows.
The growth rate has a tremendous effect on the resources consumed by
the agorithm.

Consider the following simple agorithm to solve the problem of finding
the 1% element in an array of n integers.

public int findFirstElement(int[] a){
int firstElement = g[0];
return firstElement;

}

It is clear that no matter how large the array is, the time to copy the value
from the first position of the array is aways constant (say k). So the time
T to run the algorithm as a function of n, T(n) = k. Here T(n) does not
depend on the array size n. We always assume T(n) is a non-negative
vaue,

Consider another following algorithm to solve the problem of finding the
smallest element in an array of n integers.

public int findSmallElement(int[] a)X{
int smElement = g0];
for(int i=0; i<n ; i++)
If(gi] < smElement)
smElement=4[i];
return smElement;

}

Here the basic operation is to compare between two integers and each
comparison operation takes a fixed amount of time (say k) regardless of
the value of the two integers or their position in the array. In this
algorithm the comparison operation is repeated n times due to for loop.
So the running time of the above algorithm, T(n) = kn. The above
agorithm is said to have linear growth rate.

Since for calculation of running time we want a reasonable approximation
we have ignored the time required to increment the variablei , the time
for actual assignment when asmaller value is found or time taken to
initialize the variable smElement.

Consder another agorithm to solve the problem of finding the smallest
element from atwo dimensional array n rows and n columns,

public int findSmallElement(int[][] a){
int smElement = g0][0];
for(int i=0; i<n ; i++)
for(int j=0; j<n ; j++)
if(ai][j] < smElement)
smElement=a[i][j];
return smElement;

}

The total number of comparison operation occurs n* n=r’ times. So the
running time of the agorithm, T(n) = kn”. The above agorithm is said to
have quadratic growth rate.

Contiguous Subsequence Sums Example:

int[] a={3,4,1,3,2,7,4,4,2,6,1, 4

We shall compute all contiguous subsequence of length 5 for the array.
Array size n=12, subsequence length m=5.

Total number of subsequence=n—-m+ 1 =12-5+1=8.

Using Brute force algorithm:

0 =40] +d1] + d2] +d3] + d4] = 3+4+1+3+2=13
S1=4d1] +d2] + 3] +d4] + a5]=4+1+3+2+7=17
S2=4q2] +d3] + d4] + d5] + d6]=1+3+2+7+4=17
S3=43] + d4] + 5] + d6] + g7]=3+2+7+4+4=20
SA=d4] +d5] +4d6] + 7] +d8=2+7+4+4+2=19
S5=45] + d6] + 7] + 48] + d9|=7+4+4+2+6=23
S6=4d6] +d7] +4d8] +49] + q10]=4+4+2+6+1=17
S7=47] +d8] +49] +d10] + g11]=4+2+6+1+4=17
Using Brute force algorithm total number of additions =8*4=32.
Using previous subsequence(S.1=S, + a[k+m] —alk])
So=40] + 1] + 2] +d3] + 4] = 3+4+1+3+2=13

S, =S+ g5] -g0] = 13+7-3=17

S, =S, +d6] - d1] = 17+4-4=17

Ss =S+ 7] - d2] = 17+4-1=20

S, = Sg+ 8] — a[3] = 20+2-3=19

Sy = S+ 9] — 4] = 19+6-2= 23

Ss = S5+ q10] — g[5] = 23+1-7= 17

S; =St q11] — 6] = 17+4-4= 17
Total number of additions =18
Running Time Calculation Examples:

a for(inti=0; i<n; i++)
System.out.printin(* Algorithm analysis’);
for(int j=n; j>0; j--)
System.out.printin(* Algorithm analysis’);

The println() method takes a constant amount of time say c.

The printin() method will be called n times due to 1* for loop and n times
due to 2 for loop. So total running time of the above algorithm

T(n) = (n+tn)*c =2nc

b) for(int =n; i>0; i--)
for(int j=n; j>i; j--)
System.out.printin(* Algorithm analysis’);

The loop variable for the outer loop is assigned to the values

n,nNnln2z , 1resulting atotal of n iterations. The inner loop
is executed (n-i) times. The total number of calls to the printin() method
iIs(n-n) + (n- (n-1)) + (n- (n-2)) +............ +(n-1) = 0+1+2+.......... +n1
=(n-1)*n/2.
T(n) =c* (n-1)*n/2.

c) for(int i=1; i< n; i=i*2)
System.out.printin(* Algorithm analysis’);

Theloop variable i isassigned to thevaues 1, 2, 4,...... n. For smplicity
of our calculation let as assume that n is a power of 2. Suppose the loop
will be terminated after k number of iterations. So, n = 2 ie. logn = k.
Running time of the above agorithm, T(n) = c*k = c*logn.

d) for (int i=0; i<=n; i++)
if(i %10 == Q)
for (int j=0; j<i; j++)
System.out.printin(“ Algorithm anaysis’);

Theinner loop will be executed only when iisamultiple on 10 ie. i=0,
10, 20, , (/10)*10. The total number of calls to the printin() method

Is0+10+20+30+.......... + (n/10)*10 =
10* (0+1+2+3+....+n/10)=10* (n/10)* (n/10 + 1)/2.
Running time of the above agorithm, T(n) = ¢*10* (n/10)* (/10 + 1)/2.

