
Compsci210 tutorial

Introduction to Assembly and LC-3 Simulator

 Last tutorials we have learnt how to
 Represent decimal numbers in binary forms (4 ways).
 Add, subtract, multiply and divide numbers in binary form (2’s

complement).
 Detect invalid overflow/underflow.
 Understand bit wise operations like OR, AND, NOT…
 Understand shift left (<<), shift right arithmetically (>>) and

logically (>>>).

 We need to visualise what we have learnt:
 Assembly and LC-3 Simulator

Data representation part

Central Processing Unit

 A Central Processing Unit (CPU), or sometimes just
called processor, is a description of a class of logic
machines that can execute computer programs.

CPU – memory - register

 CPU: 3.0 Ghz
 Bus: 667 Mhz
 Ram: 400 Mhz

 Those are connected through bus (which is a subsystem
that transfers data between computer components inside
a computer)

 Connection speeds between them are different.
 Use registers to deal with calculation if possible!

A bit of history (1)
 First generation computer languages: Machine code.

 Computer hardware is designed to understand and execute what is called “machine code” (instructions
to tell the computer what to do).

 A computer program: the bit pattern of the machine code to be loaded into the computer memory. It
could be specified manually, using switches on the front panel for the computer

 Second generation computer languages: Assembly language.
 Specifying a computer program as the bit pattern of the machine code was very time consuming, and

error prone. A human readable/writable form of machine code was developed, namely “assembly
language”.

 Another program, called an assembler, was developed to take a textual version of the machine code,
and translate it into machine code.

Translation from Assembly language to
Machine code

assembler

A bit of history (2)
 Third generation computer languages: High level languages.
◦ Assembly language is very low level, and depends on the computer architecture.
◦ High level languages were developed, that were relatively machine independent, and more like

the notation of mathematics. Fortran (~1955) and Basic (~1964): still had to build control
statements out of one line if statements and goto statements, and there were no recursive
functions.

◦ Pascal (~1970) and C (~1972) were developed, with support for data structures.
◦ 1971, Ken Thompson developed a FORTRAN compiler, instead ended up developed a compiler

for a new high-level language he called B.
◦ In 1972, Dennis Ritchie at Bell Lab, built on B to create a new language called C (next to B)

which inherited Thompson's syntax. Most of the components of Unix were eventually rewritten
in C. Because of its convenience and power, C went on to become the most popular
programming language in the world over the next quarter century.

◦ Modern languages (third generation languages), such as C++ (~1983) and Java (~1995), are
object oriented languages (both are based on C). Third generation languages represent the
main programming languages in use today.

From:
http://phpimpact.files.wordpress.com/2008/06/programming_
languages.png

 Download links are provided in tutorial page
 After installation, you will see 2 exe programs (windows):

LC3Edit.exe and Simulate.exe.

 LC3Edit is editor program (IDE).
 Simulate is LC3 simulator program (virtual computer

which execute assembly code).

Install and run LC-3 Simulator

 You can edit your program here using binary code,
hexadecimal code and assembly code.

 After finish editing, you can export to .obj file which can
be run by LC3 simulator.

LC3Edit

 Include 2 frames: console
(likes computer screen)
and simulator (computer)

LC3 simulate.exe

 Registers and values
stored in register

 Memory and values stored in
memory

 Each program should be placed in it's own .asm file.
 The files should be entitled *.asm like example.asm...
 Each program should begin in memory at address x3000. This is

accomplished via the .ORIG directive, which should be the first line in each
file.

 The end of the program should consist of two lines: the penultimate line
should contain the HALT instruction, and the last line in the file should
contain the .END directive to inform the assembler that this is the end of
the program.

 So… all of assembly files should be of the following form:
 .ORIG x3000
 ...
 your code goes here
 ...
 HALT
 .END

 See example programs.

LC3 assembly programs

 .ORIGx3000
 ;;; Test AND instructions
 ADD R1,R1,#5
 ADD R2,R2,#-2
 ADD R3,R2,R1
 AND R4,R3,#-1
 AND R5,R1,R4
 ADD R6,R6,#-1
 HALT
 .END
 ;;; Detail will be talked in tutorial

Run example: AND.asm

 .ORIG x3000
 ;;; Test NOT instructions
 AND R0,R0,#0
 NOT R0,R0
 AND R1,R1,#0
 ADD R1,R1,#1
 NOT R1,R1
 NOT R1,R1
 ADD R0,R0,R1
 HALT
 .END
 ;;; Detail will be talked in tutorial

Run example: NOT.asm

 The LC-3 instruction set implements fifteen types of
instructions, with a sixteenth opcode reserved for later
use.

 Arithmetic instructions available include addition, bitwise
AND, and bitwise NOT, with the first two of these able to
use both registers and sign-extended immediate values as
operands.

 The LC-3 can also implement any bitwise logical function,
owing to the fact that NOT and AND together are
logically complete.

 So A OR B = NOT[(NOT A) AND (NOT B)]
 Then AND, OR, NOT can be used to implement XOR

Limited number of instruction sets in LC 3

Exercise 1
 Interpret the instruction

0x5fe0 = 0101 1111 1110 0000
1. What is the opcode? What instruction is it? E.g. add, and,

not?

2. Describe what the instruction does?

 Use LC3 Assembly Instruction set table to convert the
following code to Binary ISA codes:

 ADD R1,R1,#5
 ADD R2,R2,#-2
 ADD R3,R2,R1
 AND R4,R3,#-1
 AND R5,R1,R4
 ADD R6,R6,#-1

Exercise 2

 Use LC3 Assembly Instruction set table to convert the
following code to Binary ISA codes:

 AND R0,R0,#0
 NOT R0,R0
 AND R1,R1,#0
 ADD R1,R1,#1
 NOT R1,R1
 NOT R1,R1
 ADD R0,R0,R1

Exercise 3

 Use LC3 Assembly Instruction set table to convert the
following code to Binary ISA codes:

 LD R2, Num1
 LD R3, Num2
 ADD R4, R2, R3
 HALT
 Num1 .FILL 5
 Num2 .FILL 6

 What do the codes do?

Exercise 4

