Compsci210 tutorial

Introduction to Assembly and LC-3 Simulator

Data representation part

» Last tutorials we have learnt how to
Represent decimal numbers in binary forms (4 ways).

Add, subtract, multiply and divide numbers in binary form (2’s
complement).

Detect invalid overflow/underflow.
Understand bit wise operations like OR,AND, NOT...
Understand shift left (<<), shift right arithmetically (>>) and
logically (>>>).

» We need to visualise what we have learnt:
Assembly and LC-3 Simulator

Central Processing Unit

» A Central Processing Unit (CPU), or sometimes just
called processor, is a description of a class of logic
machines that can execute

CPU — memory - register

Feeh

Contol (P

Memory

Detoie
Load | | Program conmier
Exeette | Inteer regiers
Store | | Floatng poin registers

Registers 32-64 1 cycle

L1 cache 56 KB 2 cycles

L2 cache 512KB - 2MB 6 - 10 cycles
External Memory 512MB - 1 GB 100 - 300 cvcles
Disks 160 GB - 250GB | 107 eveles to seek

MU

1 Cacte
@ 12 Cacke

e s c—— —

» CPU: 3.0 Ghz
» Bus: 667 Mhz
» Ram: 400 Mhz

» Those are connected through bus (which is a subsystem
that transfers data between computer components inside

a computer)

» Connection speeds between them are different.
» Use registers to deal with calculation if possible!

A bit of history (1)

» First generation computer languages: Machine code.
Comh)uter hardware is designed to understand and execute what is called “machine code” (instructions

to te

the computer what to do).

A computer program: the bit pattern of the machine code to be loaded into the computer memory. It
could be specified manually, using switches on the front panel for the computer

add.exe - Hex

0:

10:

20

30:

410

- B0:

4 Second generatlon C

4D
B&
0o
0o
OE

69 73
ompu

LA
oo
0o
0o
1F

90 00 02 o0 00 00 04 00 OO OO0 FF FF 0O
oo oo oo o0 0o 00 40 00 0O 00 00 o0 0o
oo oo oo oo 0o 00 00 00 00 00 0o o0 ao
oo oo oo oo 0o 00 00 00 00 00 80 o0 0o
B4 OE 00 B4 09 CD 21 BS 01 4C CD 21 54
20 7?0 72 6F 67 72 61 6D 20 63 61 EE GE
ter languages: Assembly language.

oo
oo
0o
oo
68
6F

R T
e o T, LINTh
1= program Canno

Specifying a computer program as the bit pattern of the machine code was very time cgnsumin% and
error prone. A human readable/writable form of machine code was developed, namely “assembly

language”.

Another program, called an assembler, was developed to take a textual version of the machine code,

and translate’it into machine code.

File Edit Translate Help

DisEs ==

|#4| B,[%[=|

; Program to multiply an integer by the constant 6.
; Before execution, an integer must be stored in HUHMBER.

-0ORIG x3ese

LD R1,51X
LD R2 ,HUHMBER
AND R2,R3,H08

; Clear R3.

It will

; contain the product.

assembler

" T.1.0bj - Hex

0: 30 50 22 0Y 24 05 56 E0 16
10: 00 00 00 pe

Translation from Assembly language to
Machine code

A bit of history (2)

e Third generation computer languages: High level languages.

o

(e]

Assembly language is very low level, and depends on the computer architecture.

High level languages were developed, that were relatively machine independent, and more like
the notation of mathematics. Fortran (~1955) and Basic (~1964): still had to build control
statements out of one line if statements and goto statements, and there were no recursive
functions.

Pascal (~1970) and C (~1972) were developed, with support for data structures.

1971, Ken Thompson developed a FORTRAN compiler, instead ended up developed a compiler
for a new high-level language he called B.

In 1972, Dennis Ritchie at Bell Lab, built on B to create a new language called C (next to B)
which inherited Thompson's syntax. Most of the components of Unix were eventually rewritten
in C. Because of its convenience and power, C went on to become the most popular
programming language in the world over the next quarter century.

Modern languages (third generation languages), such as C++ (~1983) and Java (~1995), are
object oriented languages (both are based on C).Third generation languages represent the
main programming languages in use today.

Programming Languages

M Java
Mo
C++

W Javascript From:

W rHp . .
B e http://phpimpact.files.wordpress.com/2008/06/programming
M Python languages.png

Ruby

Install and run LC-3 Simulator

» Download links are provided in tutorial page

» After installation, you will see 2 exe programs (windows):
LC3Edit exe and Simulate.exe.

tggESdt & Code Editar For Wi, . @Egu;?:nedleaﬁr For Windows
> LC3Ed|t is editor program (IDE).

» Simulate is LC3 simulator program (virtual computer
which execute assembly code).

LC3Edit

File Edit Translate Help

DISES| 4|50 || 85

; This LC2 assembler program loops through the following operalas
; 1) reads two numbers from memory {(from Humil and Hum2})
2) adds them
4) puts the result in memory {at Rest1)
) Hext it performs a logical AHD between the two numbi
6) puts the result in memory {at Res2)

; R1: holds Hum1l value
; RZ2: holds Hum? value
: R3: holds result of operation

» You can edit your program here using binary code,
hexadecimal code and assembly code.

» After finish editing, you can export to .obj file which can
be run by LC3 simulator.

LC3 simulate.exe

IiF"“'| EI Ezl g:] 6 | I .| | ||]||| I Jumpto (sFD79 -

RO ®/FFF 32767 B4 x0006 & BC =FD7o
Rl ®xFFFF -1 RE =000z 3 IR xBOZC
RZ woaon o R& =0ooo 0 PSR xBOOL
R3 xoos0 - 48 2 HFDPS -B3l CC F Loadinhg next pass, please run programe agair
wp xFD79 ~001000000000G811 xZ2003 LD RO, xFD7D A trap was executed with an illegal wector r
#*FIVia 0010001000000011 =x=2203 LD Rl, xFD?E = J|-———- Halting the processor —----
»¥DTE 0010111000000011 xZE03 LD R7, =FDTF
«FDIC 1100000111000000 =1Co EET
*=FD7D 1111110100001011 =FDOE TREATP x0E
»FDTE 0000000000000011 =00035 NOF
*xrD7F 1111110100000111 =<FDO? TEAP =07

®FDE0 00000000000010152° =0004 NOF

» Registers and values » Include 2 frames: console
stored in register (likes computer screen)

» Memory and values stored in and simulator (computer)
memory

LC3 assembly programs

» Each program should be placed in it's own .asm file.
» The files should be entitled *.asm like example.asm...

» Each program should begin in memory at address x3000.This is
accomplished via the .ORIG directive, which should be the first line in each
file.

» The end of the program should consist of two lines: the penultimate line
should contain the HALT instruction, and the last line in the file should
contain the .END directive to inform the assembler that this is the end of
the program.

» So... all of assembly files should be of the following form:
.ORIG x3000

your code goes here

HALT
.END
» See example programs.

Run example: AND.asm

> .ORIG x3000

» ;;; Test AND instructions
> ADD RI,RI,#5
> ADD R2,R2,#-2
> ADD R3,R2,RI
> AND R4,R3,#-1
> AND R5,R[,R4
> ADD R6,R6,#-1
> HALT

> .END

4

.. Detail will be talked in tutorial

Run example: NOT.asm

> .ORIG x3000

» ;;;Test NOT instructions
> AND RO,R0,#0

> NOT RO,RO

> AND RI,RI,#0

> ADD RI,RI#I

> NOT RI,RI

> NOT RI,RI

> ADD RO,RO,RI

> HALT

> .END

» ;;; Detail will be talked in tutorial

Limited number of instruction sets in LC 3

4

4

The LC-3 instruction set implements fifteen types of
instructions, with a sixteenth opcode reserved for later
use.

Arithmetic instructions available include addition, bitwise
AND, and bitwise NOT, with the first two of these able to
use both registers and sign-extended immediate values as
operands.

The LC-3 can also implement any bitwise logical function,
owing to the fact that NOT and AND together are
logically complete.

So A ORB=NOT[(NOT A) AND (NOT B)]
Then AND, OR, NOT can be used to implement XOR

Exercise 1

» Interpret the instruction

Ox5fe0 = 0101 1111 11100000
I. What is the opcode? What instruction is it? E.g. add, and,
not!?

2. Describe what the instruction does?

Exercise 2

» Use LC3 Assembly Instruction set table to convert the
following code to Binary ISA codes:

» ADD RI,RI#5
» ADD R2,R2,#-2
» ADD R3,R2,R1
» AND R4,R3,#-1
» AND R5,R1,R4
» ADD R6,R6,#-|

Exercise 3

» Use LC3 Assembly Instruction set table to convert the
following code to Binary ISA codes:

» AND RO,RO,#0
» NOT RO,RO
» AND RI,RI#0
» ADD RI,RI#I
» NOT RI,RI
» NOT RI,RI
» ADD RO,RO,RI

4

Exercise 4

» Use LC3 Assembly Instruction set table to convert the
following code to Binary ISA codes:

» LD R2, Numl
» LD R3, Num?2
» ADD R4,R2,R3
» HALT

» Numl FILL 5
» Num?2 FILL 6
4

4

What do the codes do!?

