
Data representation

Last time we have learnt how to representLast time we have learnt how to represent
numbers (positive natural numbers) in binary.
For example:For example:
◦ 1710 = 10001
◦ 102410 = 100000000002
But… how do we represent negative numbers
4 possible ways:

S d◦ Sign magnitude
◦ Offset binary
◦ 1’s complement◦ 1 s complement
◦ 2’s complement

Assume we have N bits available to representAssume we have N bits available to represent
numbers.
We use the most significant bit to representWe use the most significant bit to represent
sign (+ or -), ‘+’ -> 0 and ‘-’ -> 1
Say to represent +12 using 8 bitsy p g
+12 = (+) (12) = ‘0’ ‘0001100’ = 00001100
And -12 is represented as:
-12 = (-) (12) = ‘1’ ‘0001100’ = 10001100
But… 00000000 = +0 = 0
And... 10000000 = -0 = 0

Assume we have N bits available to representAssume we have N bits available to represent
numbers.
Those bits can represent 2N different values

b f 0 t 2N f 2N t 0 fcan be from 0 to 2N or from –2N to 0 or from -
2N-1 to 2N-1, or also can be from A to B in any
range as long as B – A = 2Ng g
N bits: 000….000 -> 111….111
Set 000….000 = A and 111….111 = B
> 000 001 A+1-> 000….001 = A+1

-> 000….010 = A+2
-> 000….011 = A+3> 000….011 A+3
This is offset Excess - A, it’s only show one 0 but
complicated in calculation.

Give convenience in calculation (addition)Give convenience in calculation (addition)
Positive numbers are represent the same as
sign magnitude:sign magnitude:
+12 = 00001100
N ti b bit i d fNegative numbers are bit-inversed from
positive number
12 i (00001100) 11110011-12 = inverse(00001100) = 11110011

But…
◦ +0 = 00000000 = -0 = 11111111
◦ Wasting expensive bits/memory

Develop from 1’s complementDevelop from 1 s complement
Positive numbers are represent the same as
sign magnitude:sign magnitude:
+12 = 00001100
N ti b bit i d fNegative numbers are bit-inversed from
positive number and add 1
12 i (00001100) 1 11110011 1-12 = inverse(00001100)+1 = 11110011+1

= 11110100
Thi i id l d i llThis is widely used in all computer system
nowadays

Shift operators move bits to the left or to the right.p g
•Used to shift the bit patterns left and right.

•Shift corresponds to division/multiplication by powers of 2 (no
overflow problem)overflow problem)

•Three shift instructions:
◦ “sll” (shift left logical): <<
◦ “sra” (shift right arithmetic): >>
◦ “srl” (shift right logical): >>>

•The shift logical instructions fill the vacated bits with 0The shift logical instructions fill the vacated bits with 0

•The shift right arithmetic instruction fills the vacated bits with the sign
bit.

•These instructions can be used to extract fields out of a bit pattern,
and interpret them as either unsigned or signed numbers.

3. Example Binary Computation:p y p
3.1 3 – 2 or 3 + (-2)
Answer:
Sign Magnitude: 0011 – 0010 = 0001g g
Offset Binary: 1011 + 0110 = (1) 0001
1’s Complement: 0011 + 1101 = (1) 0000 = 0001
2’s Complement: 0011 + 1110 = 0001p
3.2 Given the following bit pattern; 01011012
Work out the value of it based on the following assumption:
Unsigned 7-bit binary: (45)
7-bit sign magnitude (MSB is sign bit): (45)
7-bit 2’s complement: (45)
XS-33 (Excess-K, K = 33): (12)
Unsigned fixed point (assume a 3 bit fraction, 0101.101): (5.625)

Pre-IEEE754Pre IEEE754
◦ Fixed point Faction: 1001.1111
◦ Limitation on range of representation
IEEE754 standard 2 types:IEEE754 standard - 2 types:
◦ Single precision (floating) uses 32 bits
◦ Double precision (double) uses 64 bits
Th t l t t fl tiThe most popular way to represent floating
points numbers.
◦ Why?y
◦ Compare to fixed point N bit fractions
Include: sign bit, magnitude bits and mantissa
bitsbits.
Single precision: 1 + 8 + 23 = 32 bits
Double precision: 1 + 11 + 52 = 64 bits

Represent -3 25 in IEEE 754 single precisionRepresent -3.25 in IEEE 754 single precision
3.25 = 11.012 = 11.01 x 2^0 = 1.101 x 2^1
Read the result:Read the result:
◦ Sign bit = negative(-) = 12
◦ Magnitude = 1+127 = 128 = 1000 0000◦ Magnitude = 1+127 = 12810 = 1000,0000
◦ Mantissa = 10100000… (fill up 23 bits)

Concat them together:
◦ 1 10000000 1010000000…
◦ 1100,0000,0 101,0000,000,…
◦ C0500000 is the answer

C0A40000 in IEEE 754 single precision toC0A40000 in IEEE 754 single precision to
decimal floating point representation
1100 0000 1010 0100 0000 0000 000000001100,0000,1010,0100,0000,0000,00000000
1/10000001/01001000000000000000000
C l l tiCalculation:
◦ Sign bit = 1 -> negative number
◦ Magnitude 2^7+1 128+1 129 127 2◦ Magnitude = 2^7+1 = 128+1 = 129 – 127 = 2
◦ Mantissa = 1.01001
◦ Together = - 1 01001 x 2^2 = -101 001Together 1.01001 x 2 2 101.001
◦ = -(5+2^-3) = -5.125

Question 1:Q
Please answer why there are only 15 values when you use
`sign magnitude’ in table of signed binary numbers on
page 7, but 16 when there is no sign bit?p g g

Question 2:
What are the decimal values of the following binaryWhat are the decimal values of the following binary
number if they are Unsigned 7-bit binary, 7-bit sign
magnitude (MSB is sign bit), 7-bit 1’s complement, 7-bit
2’s complement, XS-13 (Excess-K, K = 13), Unsigned
fi d i (3 bi f i)fixed point (assume a 3 bit fraction):
0110101
0001110
1101001
1000101

Question 3:Q
Computing following equations show the result in 16 bits
2’s complement binary number:
–112+63=112+63
78-13=
-333+111 =
-123-14 =123 14 =
Question 4:
Answer the follow computing is overflow or not in 6 bit
binary:binary:
001010 + 010100
010101 + 100010
110110 + 001111110110 + 001111
110010 + 110011

Question 5:Question 5:
Answer the follow computing (6 bits used):
001010 & 010100001010 & 010100
010101 | 100010
110110 ^ 001111110110 ^ 001111
NOT(110010 ^ 110011)
000100 >> 2
110110 << 1
100110 >>> 3

Exercise 6: Convert C2100000 from IEEEExercise 6: Convert C210000016 from IEEE
754 Floating Point (Single Precision) to
decimaldecimal

Exercise 7: Convert 2.25 from Decimal to IEEE
754 Floating Point (Single Precision)754 Floating Point (Single Precision)

