Computer Science 210
tutorial 2

Data representation

Binary number system

» Last time we have learnt how to represent
numbers (positive natural numbers) in binary.

» For example:
> 17,5 = 10001
- 1024,, = 10000000000,
» But... how do we represent negative numbers

» 4 possible ways:
> Sign magnitude
- Offset binary
- 1’s complement
- 2’s complement

Signh magnitude

» Assume we have N bits available to represent

numbers.
» We use the most significant bit to represent
sign (+ or -), ‘“+’ -=> 0 and ‘-’ -> 1

» Say to represent +12 using 8 bits

» +12 =(+)(12) ="'0" ‘'0001100" = 00001100
» And -12 is represented as:

» =12 =()(12)="1 0001100" = 10001100
» But... 00000000 =+0=0

» And... 10000000 =-0=0

Off set binary

» Assume we have N bits available to represent
numbers.

» Those bits can represent 2N different values

» =» can be from 0 to 2N or from -2N to O or from -
2N-Tto 2N-1 or also can be from A to B in any
range as long as B- A = 2N

N bits: 000....000 -> 111....111

Set 000....000=Aand 111....111 =B

-> 000....001 = A+1

-> 000....010 = A+2

-> 000....011T = A+3

This is offset Excess — A, it’s only show one 0 but
complicated in calculation.

vV VvV Vv VvV VvV V9

1’s complement

» Give convenience in calculation (addition)

» Positive numbers are represent the same as
sigh maghnitude:

» +12 = 00001100

» Negative numbers are bit-inversed from
positive number

T oW oW a W a Y T Y oYW a N

» =12 = inverse(0O0001100) = 11110011

» But...

- +0 = 00000000 =-0=TTTTT1T1711
- Wasting expensive bits/memory

2’s complement

» Develop from 1’s complement

» Positive numbers are represent the same as
sigh maghnitude:

» +12 = 00001100

» Negative numbers are bit-inversed from
positive number and add 1

T oW oW a W a Y T Y oYW a N

» =12 = inverse(0000TT100)+1 =11110011+1
= 11110100

» This is widely used in all computer system
nowadays

Table of signed binary numbers

Performing Arithmetic:

value Sign Magnitude Offset Binary 1’s complement 2’s complement

+7 0111 1111 0111 0111
+6 0110 1110 0110 0110
+3 0101 1101 0101 0101
+4 0100 1100 0100 0100
+3 0011 1011 0011 0011
+2 0010 1010 0010 0010
+1 0001 1001 0001 0001
0 0000 1000 0000 0000
-1 1001 0111 1110 1111
-2 1010 0110 1101 1110
-3 1011 0101 1100 1101
-4 1100 0100 1011 1100
-5 1101 0011 1010 1011
-6 1110 0010 1001 1010
-7 1111 0001 1000 1001
-8 I 0000 ! 1000
-0 1000 /! 1111 /f

Over flow and under flow

Carry from MSB? Carrv into MSB? overflow
no no no
no ves yes
yes no yes
yes yes no

Overflow and Underflow in addition:

Adding two numbers with different signs can never produce an overflow or underflow.
Adding two positive numbers produces an overflow 1if the sign of the result 1s negative.
Adding two negative numbers produces an underflow 1f the sign of the result 1s positive.
Note that 1n one case there 1s a carry out and 1n the other there 1s not

(+7) 0111 (-7) 1001
(+7) 0111 (-6) 1010
(+14) 1110 (-13) 0011

Overflow and Underflow in Subtraction:
® Subtracting two numbers with the same signs can never produce an overflow or underflow.

® Subtracting a negative number from a positive number produces an overflow
if the sign of the result 1s negative.

® Subtracting a positive number from a negative number produces an underflow
if the s1gn of the result 1s positive.

(+4) 0100 0100 -4 1100 1100
-(-5) -1011 0101 -(+5)-0101 1011
+9 1001 -9 0111

Shifting (<</>>/>>>)

Shift operators move bits to the left or to the right.
-Used to shift the bit patterns left and right.

v v

- Shift corresponds to division/multiplication by powers of 2 (no
overflow problem)

v

- Three shift instructions:

- “slI” (shift left logical): <<

- “sra” (shift right arithmetic): >>
- “srl” (shift right logical): >>>

v

A 4

- The shift logical instructions fill the vacated bits with 0

> t-)The shift right arithmetic instruction fills the vacated bits with the sign
it.

v

- These instructions can be used to extract fields out of a bit pattern,
and interpret them as either unsigned or signed numbers.

Examples

>
4
4
4
4
4
4
4
>
>
>
>
4
>

3. Example Binary Computation:

3.13-2o0r3 + (-2)

Answer:

Sign Magnitude: 0011 - 0010 = 0001

Offset Binary: 1011 + 0110 = (1) 0001

1’s Complement: 0011 + 1101 = (1) 0000 = 0001

2’s Complement: 0011 + 1110 = 0001

3.2 Given the following bit pattern; 0101101,

Work out the value of it based on the following assumption:
Unsigned 7-bit binary: (45)

7-bit sign magnitude (MSB is sign bit): (45)

7-bit 2’s complement: (45)

XS-33 (Excess-K, K = 33): (12)

Unsigned fixed point (assume a 3 bit fraction, 0101.101): (5.625)

Examples

3.3 What 1s result for 17 Add 19 in binary?
And check 15 overtlow or not i 5 bats(unsigned).

le = lﬂ'ﬂ"[]'lg lgm = 1[][]111
1 11 <--- Carry bats
(Showing sign bits) 010001
+ 010011
Discard extra bit 2700100

That will be overflowing just use 5 bits binary. but not overtflow in 6 bit binary.

3.4 What 1s result for -17 Add -19 in binary?
And check 1s overflow or not in 6 bits.

-1719 = 101111, -1915 = 101101,
1 1111 <--- Carry bits
(Showing sign bits) 101111
+ 101101
Discard extra bit 21011100

FINAL ANSWER: 0111002 =+281
If we use 8 bits to represent the result, that will be 11011100(-36).

Floating point numbers

IEEE 754 standard

» Pre-IEEE/54
> Fixed point Faction: 1001.1111
> Limitation on range of representation

» IEEE754 standard - 2 types:

> Single precision (floating) uses 32 bits
> Double precision (double) uses 64 bits
» The most popular way to represent floating
points numbers.
> Why?
- Compare to fixed point N bit fractions
> anlude: sign bit, magnitude bits and mantissa
Its.

» Single precision: 1 + 8 + 23 = 32 bits
» Double precision: 1 + 11 + 52 = 64 bits

Single IEEE 754 example

» Represent -3.25 in |IEEE 754 single precision
» 3.25=11.01, =11.01 x 2A0 = 1.101 x 2A

» Read the result:
> Sign bit = negative(-) = 1,
- Magnitude = 1+127 = 128,, = 1000,0000
- Mantissa = 10100000... (fill up 23 bits)

» Concat them together:

-1 10000000 1010000000...

- 1100,0000,0 101,0000,000,...
- CO500000 is the answer

Single IEEE 754 example 2

» COA40000 in IEEE 754 single precision to
decimal floating point representation

» 1100,0000,1010,0100,0000,0000,00000000

» 1/10000001/01001T000000000000000000

» Calculation:
> Sign bit = 1 —-> negative number
- Magnitude = 2A7+1 = 12841 =129-127 =2
- Mantissa = 1.0100]1
- Together = - 1.01001 x 2A2 = -101.001
o = —(5+2A-3) = -5.125

Exercises

Question 1:

Please answer why there are only 15 values when you use
sign magnitude’ in table of signed binary numbers on
page 7, but 16 when there is no sign bit?

Question 2:

What are the decimal values of the following binary
number if they are Unsigned 7-bit binary, 7-bit sign
maghnitude (MSB is sign bit), 7-bit 1’s complement, 7-bit
2’s complement, XS-13 (Excess-K, K = 13), Unsigned
fixed point (assume a 3 bit fraction):

0110101
0001110
1101001

1000101

Exercises

» Question 3:

» Computing following equations show the result in 16 bits
2’s complement binary number:

» =112+63=

» /78-13=

» =333+111 =

» =123-14 =

» Question 4.

» Answer the follow computing is overflow or not in 6 bit
binary:

001010 + 010100
010101 + 100010
110110 + 001111
110010 + 110011

Exercises

» Question 5:

» Answer the follow computing (6 bits used):
» 001010 & 010100

» 010101 | 100010

» T101T0OA 001111

» NOT(110010A 110011)

» 000100 >> 2

» 110110 << 1

» 100110 >>> 3

Exercises

» Exercise 6. Convert C2100000,, from IEEE
754 Floating Point (Single Precision) to
decimal

v Exercise 7 Convert 2.25 from Decimal to [EEE
754 Floating Point (Single Precision)

