State-space Approach

- In tracking a moving object by remote measurements, we are interested in monitoring how position and velocity of the object change in time
- The state-space approach to tracking, navigation, and many other application problems is based on describing a time-varying process by a vector of quantities
- These quantities are collectively called the state of the process
- The evolution of the process over time is represented as a trajectory in the space of states, i.e. a successive transition from one state to another

State-space Modelling

- **State**: a vector of measurements for an object describing its behaviour in time
 - Example: [p, v, a] the position, velocity, and acceleration of a moving 1D "object" in time: $v(t + \Delta t) = v(t) + a(t)\Delta t$; $p(t + \Delta t) = p(t) + \frac{v(t+\Delta t)+v(t)}{2}\Delta t = p(t) + v(t)\Delta t + \frac{a(t)}{2}\Delta t$
- State space: the space of all possible states
- **Trajectory** of an object in the state space: the evolution of the object's state in time

t	0	1	2	3	4	5
a(t)	5	5	0	0	0	0
v(t)	0	5	10	10	10	10
p(t)	0	2.5	10	20	30	40

State-space Trajectory

1D point trajectory in the 3D state space

- for k = 0: $a_{k+1} = a_k$; $v_{k+1} = v_k + a_k$; $p_{k+1} = p_k + v_k + \frac{a_k}{2}$
- for k = 1, 2, ...: $a_{k+1} = 0$; $v_{k+1} = v_k + a_k$; $p_{k+1} = p_k + v_k + \frac{a_k}{2}$

State-space Trajectory: Vector Description

State of the process: an $n \times 1$ vector \mathbf{x}_k of quantities describing the process at time k, e.g.

$$\mathbf{x}_{k} = \begin{bmatrix} x_{1,k} \\ x_{2,k} \\ x_{3,k} \end{bmatrix} \equiv \begin{bmatrix} p_{k} \\ v_{k} \\ a_{k} \end{bmatrix}; \quad k = 0, 1, 2, \dots$$

Observation, or output: an $m \times 1$ vector \mathbf{y}_k ; $m \leq n$, being a vector or scalar function of the state vector at time k: $\mathbf{y}_k = \mathbf{C}_k(\mathbf{x}_k)$

Process evolution: a vector function of the state vector at time k: $\mathbf{x}_{k+1} = \mathbf{A}_k(\mathbf{x}_k)$

Estimating States: General Case

- **Problem**: Estimate states \mathbf{x}_k from observations \mathbf{y}_k ; k = 0, 1, 2, ...
- Basic Assumptions:
 - Vector functions $A_k(x_k)$ describing the evolution of states are known for each k but with uncertainty u_k :

$$\mathbf{x}_{k+1} = \mathbf{A}_k(\mathbf{x}_k) + \mathbf{u}_k$$

 How the observation depends on the state vector is known also with measurement noise v:

$$\mathbf{y}_k = \mathbf{C}_k(\mathbf{x}_k) + \mathbf{v}_k$$

– Only statistical properties of the random vectors \mathbf{u}_k and \mathbf{v}_k are known

Estimating States: Linear Case

• Linear functions $A_k(\ldots)$ and $C_k(\ldots)$:

– The $n \times n$ state evolution matrices \mathbf{A}_k

- The $m \times n$ output matrices \mathbf{C}_k

• Matrix-vector evolution of the system:

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{A}_k \mathbf{x}_k + \mathbf{u}_k \\ \mathbf{y}_k &= \mathbf{C}_k \mathbf{x}_k + \mathbf{v}_k; \ k = 0, 1, 2, \dots \end{aligned}$$

 The matrices A_k and C_k can be considered as linear approximations of the non-linear vector functions A_k(...) and C_k(...)

Vision Guided Control	COMPSCI 773 S1 T		
Kalman Filtering	Slide 6		

Linear Case: an Example

State matrices: $A_0 = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$; $A_k = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$; k = 1, 2, ..., and the output matrix $C_k = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

k	0	1
$x_{1,k} / u_{1,k}$	0.0 / 0.1	$2.6 \ / \ -0.1$
$x_{2,k} / u_{2,k}$	$0.0 \; / \; -0.1$	4.9 / 0.1
$x_{3,k} / u_{3,k}$	5.0 / 0.2	5.2 / -0.2
y_k / v_k	0.3 / 0.3	2.3 / -0.3
2	3	4
10.0 / 0.1	$20.1 \ / \ -0.1$	29.8 / 0.1
10.2 / -0.1	9.9 / 0.1	9.8 / 0.0
-0.2 / -0.2	-0.2 / 0.0	0.0 / -0.2
9.7 / -0.3	20.1 / 0.0	$29.7 \ / \ -0.1$

Goal: Given the matrices A_k , C_k , statistics of u_k , v_k , and observations y_k for k = 0, 1, ..., estimate the hidden state vectors x_k , k = 0, 1, ...

Vision Guided Control	COMPSCI 773 S1 T	
Kalman Filtering	Slide 7	

Evolution of a Periodic Signal – 1

• Scalar noisy observations y_k of a periodic signal represented with a finite Fourier series plus a noise term:

$$y_k = c_1 e^{j2\pi f_1 k} + c_2 e^{j2\pi f_2 k} + \dots + c_n e^{j2\pi f_n k}$$

where the coefficients c_i are complex numbers

• For this periodic function, each frequency is the state component:

$$\mathbf{x}_{k} = \begin{bmatrix} e^{j2\pi f_{1}k} \\ e^{j2\pi f_{2}k} \\ \vdots \\ e^{j2\pi f_{n}k} \end{bmatrix}$$
$$x_{i,k+1} = e^{j2\pi f_{i}(k+1)}$$
$$\Rightarrow \underbrace{e^{j2\pi f_{n}k} = e^{j2\pi f_{i}(k+1)}}_{= e^{j2\pi f_{i}e^{j2\pi f_{i}k}} = e^{j2\pi f_{i}x_{i,k}}}$$

Evolution of a state component

Evolution of a Periodic Signal – 2

• The state evolution: $\underline{\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k}_{n}$ where \mathbf{A}_k is the diagonal $n \times \overline{n}$ matrix:

$$\mathbf{A}_{k} \equiv \mathbf{A} = \begin{bmatrix} e^{j2\pi f_{1}} & 0 & \cdots & 0 \\ 0 & e^{j2\pi f_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{j2\pi f_{n}} \end{bmatrix}$$

• The observation $\underline{y_k} = C_k \mathbf{x}_k + \mathbf{v}_k$ where C_k is the $1 \times n$ vector-row:

$$\mathbf{C}_k \equiv \mathbf{C} = [c_1 \ c_2 \ \dots \ c_n]$$

• In this example, there is no uncertainty in the state evolution: $\mathbf{u}_k = \mathbf{0}$

Vision Guided Control	COMPSCI 773 S1 T		
Kalman Filtering	Slide 9		

Estimation of States from Observations

Let $\hat{\mathbf{x}}_k$ denote the state estimated from all the known at time k observations \mathbf{y}_t ; $t = 0, 1, \dots, k$:

$$\widehat{\mathbf{x}}_k \equiv \widehat{\mathbf{x}}_k(\mathbf{y}_0,\ldots,\mathbf{y}_k)$$

At time k, the estimator has to minimise the average squared error

$$e_k = \sum_{i=1}^n |x_{i,k} - \hat{x}_{i,k}|^2 \equiv \sum_{i=1}^n |x_{i,k} - \hat{x}_k(\mathbf{y}_0, \dots, \mathbf{y}_k)|^2$$

under the simplifying assumptions:

- the state uncertainty \mathbf{u}_k is totally uncorrelated with the measurement noise \mathbf{v}_k and
- each pair of vectors $(\mathbf{u}_k, \mathbf{u}_l)$ or $(\mathbf{v}_k, \mathbf{v}_l)$ are totally uncorrelated for $k \neq l$

Basic Notation – 1

- An *n*-dimensional (or *n* × 1) column vector x of states has generally complex-valued components *x*₁, ..., *x_n*.
- The conjugate, or Hermite transpose of \mathbf{x} , denoted \mathbf{x}^{H} , is the $1 \times n$ row vector of complex-conjugate components $[x_1^* \ldots x_n^*]$

If x = a + jb, then $x^* = a - jb$ where a and b are the real and imaginary components of the complex x

- The inner product between two complex vectors \mathbf{x} and \mathbf{y} of the same dimension is defined as $\mathbf{x}^{\mathsf{H}}\mathbf{y} = \sum_{i=1}^{n} x_{i}^{*}y_{i}$
 - Two vectors are perpendicular if $\mathbf{x}^{H}\mathbf{y}=\mathbf{0}$
 - The vector length is computed as $\parallel x \parallel = \sqrt{x^{\text{H}}x}$

Basic Notation – 2

 Conjugate transposition H of an m × n matrix A with complex elements a_{α,β} is the n × m matrix A^H such that a^H(β, α) = a^{*}(α, β)

 $1 \leq lpha \leq m$ – rows and $1 \leq eta \leq n$ – columns in ${f A}$

- Law of composition for H: $(AB)^H = B^H A^H$ for matrices A and B
- Outer product xy^{H} of an $n \times 1$ vector xand an $m \times 1$ vector y is the $n \times m$ matrix of pairwise vector component products:

 $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} [y_1^* \dots y_m^*] = \begin{bmatrix} x_1 y_1^* & x_1 y_2^* & \dots & x_1 y_m^* \\ x_2 y_1^* & x_2 y_2^* & \dots & x_2 y_m^* \\ \vdots & \vdots & \ddots & \vdots \\ x_n y_1^* & x_n y_2^* & \dots & x_n y_m^* \end{bmatrix}$

Probability Concepts – 1

- Average or expected value of a continuous random variable: $\mathbb{E}\{x\} = \int_{-\infty}^{\infty} xp(x)dx$
 - p(x): a probability density function (p.d.f.) of x
 - $\circ \ \mathbb{E} \{ \ldots \}$ denotes the mathematical expectation
 - Expected vector $\mathbb{E}\{\mathbf{x}\}$ of random variables: the vector of expected elements $\mathbb{E}\{x_i\}$; i = 1, ..., n
 - Expected vector sum: $\mathbb{E}\{\mathbf{x} + \mathbf{y}\} = \mathbb{E}\{\mathbf{x}\} + \mathbb{E}\{\mathbf{y}\}$
 - Expected matrix A: the matrix of expected elements $\mathbb{E}\{A(\alpha,\beta)\}$
- Correlation between two random variables x and y: $\mathbb{E}\{xy^*\} = \int_{-\infty}^{\infty} xy^*p(x,y)dx$

 $\circ p(x,y)$ is a joint p.d.f. of x and y

Probability Concepts – 2

- Correlation matrix of two vectors \mathbf{x} and \mathbf{y} of random variables is the expected outer product matrix \mathbf{xy}^{H}
- Entries of the correlation matrix are expected pairwise products of the scalar vector entries $\mathbb{E}\{x_{\alpha}y_{\beta}^{*}\}$
- The correlation matrix of the error $\mathbf{x}_k \hat{\mathbf{x}}_k$ is the matrix $\mathbb{E}\{(\mathbf{x}_k \hat{\mathbf{x}}_k) (\mathbf{x}_k \hat{\mathbf{x}}_k)^{\mathsf{H}}\}$
- Pair of vectors x and y are **uncorrelated** if $\mathbb{E}{xy^{H}} = 0$ where 0 - the matrix of appropriate dimensions with zero entries

State / Observation Statistics Known by Assumption:

the $n \times n$ correlation matrix \mathbf{U}_k for uncertainty \mathbf{u}_k and the $m \times m$ correlation matrix \mathbf{V}_k for measurement noise \mathbf{v}_k for all $k, l = 0, \dots, K$:

$$\mathbb{E}\{\mathbf{u}_{k}\mathbf{u}_{l}^{\mathsf{T}}\} = \begin{cases} \mathbf{U}_{k} & \text{if } k = l \\ \mathbf{0} & \text{otherwise} \end{cases}$$

$$\mathbb{E}\{\mathbf{v}_k \mathbf{v}_l^{\mathsf{T}}\} = \begin{cases} \mathbf{V}_k & \text{if } k = l \\ \mathbf{0} & \text{otherwise} \end{cases}; \ \mathbb{E}\{\mathbf{u}_k \mathbf{v}_l^{\mathsf{T}}\} = \mathbf{0} \end{cases}$$

Components of the latter expected matrices are expected pairwise products of vector components such as $\mathbb{E}\{u_{k,\alpha}u_{l,\beta}\}; \alpha, \beta = 1, ..., n, \mathbb{E}\{v_{k,\alpha}v_{l,\beta}\}; \alpha, \beta = 1, ..., m, \text{ or } \mathbb{E}\{u_{k,\alpha}v_{l,\beta}\}; \alpha = 1, ..., n; \beta = 1, ..., m$

Both the uncertainty and measurement noise are centred: $\mathbb{E}{\{\mathbf{u}_k\}} = \mathbb{E}{\{\mathbf{v}_k\}} = \mathbf{0}; k = 0, 1, \dots, K$

Rudolf Kalman's Approach

The search for a linear estimator:

$$\hat{\mathbf{x}}_k = \sum_{t=0}^k \mathbf{G}_t \mathbf{y}_t$$

where G_k ; k = 0, 1, ..., K, are $n \times m$ gain matrices to be determined

The desired gain matrices have to minimise the mean error $\mathbb{E}\{\|\mathbf{x}_k - \widehat{\mathbf{x}}_k\|^2$

Initial estimate $\widehat{\mathbf{x}}_0$ and correlation matrix \mathbf{P}_0 of estimation error are assumed to be known

The Kalman's observation was that this linear estimate should **evolve recursively** just as the system's states are evolving themselves (!!)

This brilliant observation became a cornerstone of the most popular at present approach to linear filtering called **Kalman filtering**

Suppose an optimal linear estimate $\widehat{\mathbf{x}}_{k-1}$ based on observations $\mathbf{y}_0, \ \mathbf{y}_1, \ \ldots, \ \mathbf{y}_{k-1}$ is already constructed

Then $\hat{\mathbf{x}}_{k}^{\mathsf{i}} \stackrel{\text{def}}{=} \mathbf{A}_{k-1} \hat{\mathbf{x}}_{k-1}$ is the **best guess** of $\hat{\mathbf{x}}_{k}$ before making the observation \mathbf{y}_{k} at time k

It is the natural evolution of the estimated state vector $\hat{\mathbf{x}}_{k-1}$ by the linear system dynamics in Slide 6

The superscript "i" indicates this is an **intermediate** estimate before constructing $\hat{\mathbf{x}}_k$

 $\mathbf{y}_k^{i} = \mathbf{C}_k \widehat{\mathbf{x}}_k^{i}$ is the **best prediction** of \mathbf{y}_k before the actual measurement

Kalman's proposal: the optimal solution for $\hat{\mathbf{x}}_k$ should be a linear combination of $\hat{\mathbf{x}}_k^{i}$ and the difference between \mathbf{y}_k and \mathbf{y}_k^{i} :

$$\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^{\mathsf{i}} + \mathbf{G}_k \left(\mathbf{y}_k - \mathbf{C}_k \hat{\mathbf{x}}_k^{\mathsf{i}} \right)$$

If $\mathbf{y}_k = \mathbf{y}_k^i$, then $\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^i = \mathbf{A}_{k-1}\hat{\mathbf{x}}_{k-1}$, i.e. the estimate evolves purely by what is known about the process

Optimal gain matrix G_k has to minimise the mean error $\mathbb{E}\{||\mathbf{x}_k - \hat{\mathbf{x}}_k||^2\}$ in Slide 16:

$$\mathbb{E}\left\{ \| \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{\mathsf{i}} \right) - \mathbf{G}_{k} \left(\mathbf{y}_{k} - \mathbf{C}_{k} \hat{\mathbf{x}}_{k}^{\mathsf{i}} \right) \|^{2} \right\}$$

Solution: by taking and setting to zero the derivative w.r.t. to the matrix entries

Theorem 1: Let a and b be random vectors. Then the matrix G minimising $\mathbb{E}\{|| \mathbf{a} - \mathbf{Gb} ||^2\}$ is as follows:

$$\mathbf{G} = \mathbb{E}\left\{\mathbf{a}\mathbf{b}^{\mathsf{H}}\right\} \left(\mathbb{E}\left\{\mathbf{b}\mathbf{b}^{\mathsf{H}}\right\}\right)^{-1}$$

providing the correlation matrix $\mathbb{E}\left\{\mathbf{b}\mathbf{b}^{\mathsf{H}}\right\}$ is invertible.

Proof of Theorem 1 - (a)

Derivative of a scalar function f w.r.t. an $n \times m$ matrix **Q** is defined as

$$\frac{\partial f}{\partial \mathbf{Q}} = \begin{bmatrix} \frac{\partial f}{\partial Q_{1,1}} & \frac{\partial f}{\partial Q_{2,1}} & \cdots & \frac{\partial f}{\partial Q_{n,1}} \\ \frac{\partial f}{\partial Q_{1,2}} & \frac{\partial f}{\partial Q_{2,2}} & \cdots & \frac{\partial f}{\partial Q_{n,2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial Q_{1,m}} & \frac{\partial f}{\partial Q_{2,m}} & \cdots & \frac{\partial f}{\partial Q_{n,m}} \end{bmatrix}$$

For a function $f = t^{H}Qs$ where t and s are arbitrary $n \times 1$ and $m \times 1$ vectors, respectively, the derivative is

$$\frac{\partial}{\partial \mathbf{Q}} \left(\mathbf{t}^{\mathsf{H}} \mathbf{Q} \mathbf{s} \right) = \mathbf{s} \mathbf{t}^{\mathsf{H}}$$

The right hand side matrix is of the dimension $m\times n$

Each its (β, α) -entry $t^*_{\alpha}s_{\beta}$ is precisely what is obtained by differentiating the scalar function f w.r.t. the (α, β) entry $Q_{\alpha,\beta}$ of **Q**

Proof of Theorem 1 - (b)

Expanding $\mathbb{E}\{\|\mathbf{a} - \mathbf{G}\mathbf{b}\|^2\}$ gives

$$\begin{split} & \mathbb{E}\left\{\left(\mathbf{a} - \mathbf{G}\mathbf{b}\right)^{H}\left(\mathbf{a} - \mathbf{G}\mathbf{b}\right)\right\} \\ &= \mathbb{E}\left\{\left(\mathbf{a}^{H} - \mathbf{b}^{H}\mathbf{G}^{H}\right)\left(\mathbf{a} - \mathbf{G}\mathbf{b}\right)\right\} \\ &= \mathbb{E}\left\{\mathbf{a}^{H}\mathbf{a} - \mathbf{b}^{H}\mathbf{G}^{H}\mathbf{a} - \mathbf{a}^{H}\mathbf{G}\mathbf{b} + \mathbf{b}^{H}\mathbf{G}^{H}\mathbf{G}\mathbf{b}\right\} \\ &= \mathbb{E}\left\{\mathbf{a}^{H}\mathbf{a}\right\} - \mathbb{E}\left\{\mathbf{b}^{H}\mathbf{G}^{H}\mathbf{a}\right\} - \mathbb{E}\left\{\mathbf{a}^{H}\mathbf{G}\mathbf{b}\right\} + \mathbb{E}\left\{\mathbf{b}^{H}\mathbf{G}^{H}\mathbf{G}\mathbf{b}\right\} \end{split}$$

Differentiating this with respect to the matrix \mathbf{G} may seen difficult because both \mathbf{G} and \mathbf{G}^H are appearing.

It can be proven that the elements of G can be treated as independent from the elements of G^H although they are not of course

Setting the derivative of the above expression w.r.t. \mathbf{G}^{H} equal to zero produces the equation $-\mathbb{E}\left\{\mathbf{ab}^{\mathsf{H}}\right\} + \mathbf{G}\mathbb{E}\left\{\mathbf{bb}^{\mathsf{H}}\right\} = 0$

It gives the solution $\mathbf{G}=\mathbb{E}\left\{\mathbf{a}\mathbf{b}^{H}\right\}\left(\mathbb{E}\left\{\mathbf{b}\mathbf{b}^{H}\right\}\right)^{-1}$

To optimise the gain matrix \mathbf{G}_k , $\mathbf{a} = \mathbf{x}_k - \hat{\mathbf{x}}_k^{\mathsf{i}}$ and $\mathbf{b} = \mathbf{y}_k - \mathbf{C}_k \hat{\mathbf{x}}_k^{\mathsf{i}}$, so that

$$\mathbb{E} \left\{ \mathbf{a} \mathbf{b}^{\mathsf{H}} \right\} = \mathbb{E} \left\{ \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{\mathsf{i}} \right) \left(\mathbf{y}_{k} - \mathbf{C}_{k} \hat{\mathbf{x}}_{k}^{\mathsf{i}} \right)^{\mathsf{H}} \right\}$$

$$= \mathbb{E} \left\{ \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{\mathsf{i}} \right) \left(\mathbf{C}_{k} \mathbf{x}_{k} + \mathbf{v}_{k} - \mathbf{C}_{k} \hat{\mathbf{x}}_{k}^{\mathsf{i}} \right)^{\mathsf{H}} \right\}$$

$$= \mathbb{E} \left\{ \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{\mathsf{i}} \right) \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{\mathsf{i}} \right)^{\mathsf{H}} \mathbf{C}_{k}^{\mathsf{H}} \right\}$$

$$+ \mathbb{E} \left\{ \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{\mathsf{i}} \right) \mathbf{v}_{k}^{\mathsf{H}} \right\}$$

The last expectation on the right is zero as the intermediate estimate $\hat{\mathbf{x}}_k^i$ depends only on $\mathbf{y}_0, \mathbf{y}_1, \ldots, \mathbf{y}_{k-1}$ including only the noise terms \mathbf{v}_i and uncertainties \mathbf{u}_i for i < k that are uncorrelated with the "new" noise \mathbf{v}_k Thus, $\mathbb{E}\left\{\mathbf{ab}^{\mathsf{H}}\right\} = \mathbb{E}\left\{\left(\mathbf{x}_k - \hat{\mathbf{x}}_k^i\right)\left(\mathbf{x}_k - \hat{\mathbf{x}}_k^i\right)^{\mathsf{H}}\mathbf{C}_k^{\mathsf{H}}\right\}$ $= \mathbb{E}\left\{\left(\mathbf{x}_k - \hat{\mathbf{x}}_k^i\right)\left(\mathbf{x}_k - \hat{\mathbf{x}}_k^i\right)^{\mathsf{H}}\right\}\mathbf{C}_k^{\mathsf{H}} \equiv \mathbf{P}_k^i\mathbf{C}_k^{\mathsf{H}}$ where $\mathbf{P}_k^i = \mathbb{E}\left\{\left(\mathbf{x}_k - \hat{\mathbf{x}}_k^i\right)\left(\mathbf{x}_k - \hat{\mathbf{x}}_k^i\right)^{\mathsf{H}}\right\}$ denotes the correlation matrix for the "intermediate" error $\mathbf{x}_k - \hat{\mathbf{x}}_k^i$

Similar considerations result in a following simple form for

$$\begin{split} & \mathbb{E}\left\{\mathbf{b}\mathbf{b}^{\mathsf{H}}\right\} = \mathbb{E}\left\{\left(\mathbf{y}_{k} - \mathbf{C}_{k}\widehat{\mathbf{x}}_{k}^{\mathsf{i}}\right)\left(\mathbf{y}_{k} - \mathbf{C}_{k}\widehat{\mathbf{x}}_{k}^{\mathsf{i}}\right)^{\mathsf{H}}\right\} \\ &= \mathbb{E}\left\{\left(\mathbf{C}_{k}\mathbf{x}_{k} + \mathbf{v}_{k} - \mathbf{C}_{k}\widehat{\mathbf{x}}_{k}^{\mathsf{i}}\right)\left(\mathbf{C}_{k}\mathbf{x}_{k} + \mathbf{v}_{k} - \mathbf{C}_{k}\widehat{\mathbf{x}}_{k}^{\mathsf{i}}\right)^{\mathsf{H}}\right\} \\ &= \mathbb{E}\left\{\left(\mathbf{C}_{k}\left(\mathbf{x}_{k} - \widehat{\mathbf{x}}_{k}^{\mathsf{i}}\right) + \mathbf{v}_{k}\right)\left(\left(\mathbf{x}_{k} - \widehat{\mathbf{x}}_{k}^{\mathsf{i}}\right)^{\mathsf{H}}\mathbf{C}_{k}^{\mathsf{H}} + \mathbf{v}_{k}^{\mathsf{H}}\right)\right\} \\ &= \mathbf{C}_{k}\mathbf{P}_{k}^{\mathsf{i}}\mathbf{C}_{k}^{\mathsf{H}} + \mathbf{V}_{k} \end{split}$$

where $\mathbf{V}_k = \mathbb{E} \left\{ \mathbf{v}_k \mathbf{v}_k^{\mathsf{H}} \right\}$ is the measurement noise correlation matrix.

By Theorem 1, the optimal gain matrix is $\mathbf{G}_{k} = \mathbf{P}_{k}^{\mathsf{i}} \mathbf{C}_{k}^{\mathsf{H}} \left(\mathbf{C}_{k} \mathbf{P}_{k}^{\mathsf{i}} \mathbf{C}_{k}^{\mathsf{H}} + \mathbf{V}_{k} \right)^{-1}$ assuming that the inverse on the right hand side exists

The correlation matrix \mathbf{P}_k^{i} is also computed recursively starting from the matrix \mathbf{P}_0 known by assumption

Since
$$\mathbf{x}_{k} = \mathbf{A}_{k-1}\mathbf{x}_{k-1} + \mathbf{u}_{k-1}$$
 and $\hat{\mathbf{x}}_{k}^{i} = \mathbf{A}_{k-1}\hat{\mathbf{x}}_{k-1}$,
 $\mathbf{P}_{k}^{i} = \mathbb{E}\left\{ \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{i}\right) \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{i}\right)^{\mathsf{H}} \right\}$
 $= \mathbb{E}\left\{ \left(\mathbf{A}_{k-1}\mathbf{x}_{k-1} + \mathbf{u}_{k-1} - \hat{\mathbf{x}}_{k}^{i}\right) \left(\mathbf{A}_{k-1}\mathbf{x}_{k-1} + \mathbf{u}_{k-1} - \hat{\mathbf{x}}_{k}^{i}\right)^{\mathsf{H}} \right\}$
 $= \mathbb{E}\left\{ \left(\mathbf{A}_{k-1}\left(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1}\right) + \mathbf{u}_{k-1}\right) \left(\mathbf{A}_{k-1}\left(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1}\right) + \mathbf{u}_{k-1}\right)^{\mathsf{H}} \right\}$

After some rearrangement and elimination of zero-valued expectations:

$$\mathbf{P}_{k}^{\mathsf{i}} = \mathbf{A}_{k-1}\mathbf{P}_{k-1}\mathbf{A}_{k-1}^{\mathsf{H}} + \mathbf{U}_{k-1}$$

where $\mathbf{P}_{k-1} = \mathbb{E}\left\{ (\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1}) (\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1})^{\mathsf{H}} \right\}$ denotes the correlation matrix of estimation errors and \mathbf{U}_{k-1} is the correlation matrix of uncertainties at time k - 1Substituting the formula for $\hat{\mathbf{x}}_k$ to the definition of \mathbf{P}_k and with some amount of algebra, one obtains that

$$\mathbf{P}_k = \mathbf{P}_k^{\mathsf{i}} - \mathbf{G}_k \mathbf{C}_k \mathbf{P}_k^{\mathsf{i}}$$

How the Kalman Filter Works

Known values: y_i , V_i , and U_i , A_i , and C_i for $0 \le i \le k$ at each time k

- Initialisation k = 0: Choose or guess suitable $\hat{\mathbf{x}}_0$ and \mathbf{P}_0
- Iteration k = 1, 2, ...: Given $\hat{\mathbf{x}}_{k-1}$ and \mathbf{P}_{k-1} , compute:
 - 1. $\mathbf{P}_k^{\mathsf{i}} = \mathbf{A}_{k-1}\mathbf{P}_{k-1}\mathbf{A}_{k-1}^{\mathsf{H}} + \mathbf{U}_{k-1}$
 - 2. $\mathbf{G}_k = \mathbf{P}_k^{\mathsf{i}} \mathbf{C}_k^{\mathsf{H}} \left(\mathbf{C}_k \mathbf{P}_k^{\mathsf{i}} \mathbf{C}_k^{\mathsf{H}} + \mathbf{V}_k \right)^{-1}$
 - 3. $\hat{\mathbf{x}}_k^{\mathsf{i}} = \mathbf{A}_{k-1}\hat{\mathbf{x}}_{k-1}$
 - 4. $\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^{\mathsf{i}} + \mathbf{G}_k \left(\mathbf{y}_k \mathbf{C}_k \hat{\mathbf{x}}_k^{\mathsf{i}} \right)$

5.
$$\mathbf{P}_k = \mathbf{P}_k^{\mathsf{i}} - \mathbf{G}_k \mathbf{C}_k \mathbf{P}_k^{\mathsf{i}}$$

Example: 1D Process

Fixed state $x_{k+1} = x_k$ Noisy measurements $y_k = x_k + v_k$ $\mathbb{E}\{v_k\} = 0$; $\mathbb{E}\{v_k^2\} = \sigma^2$ for all k $\mathbb{E}\{x_0\} = \hat{x}_0 = 0$; $\mathbb{E}\{x_0^2\} = P_0 > 0$ $\Rightarrow A_k = C_k = 1$; $U_k = 0$, and $V_k = \sigma^2$ for all kIn this case, $\hat{x}_k^i = \hat{x}_{k-1}$, $P_k^i = P_{k-1}$ for all k so that the intermediate steps are unnecessary (the state is not

changing):

$$G_{k} = \frac{P_{k-1}}{P_{k-1} + \sigma^{2}}$$

$$P_{k} = P_{k-1} - \frac{P_{k-1}^{2}}{P_{k-1} + \sigma^{2}} = \frac{P_{k-1}\sigma^{2}}{P_{k-1} + \sigma^{2}}$$

$$\hat{x}_{k} = \hat{x}_{k-1} + \frac{P_{k-1}}{P_{k-1} + \sigma^{2}} (y_{k} - \hat{x}_{k-1})$$

Case 1: $\sigma = 0$ (no measurement noise) $\rightarrow \hat{x}_k = y_k$ Case 2: $\sigma > 0$; $P_0 = 0$ (so all $x_k = 0$) $\rightarrow G_k = 0$; $P_k = 0$, and $\hat{x}_k = 0$ for all k

Case 3: $\sigma > 0$; $P_0 > 0 \rightarrow P_k < P_{k-1}$ (decreasing error variance), and since $P_0 > 0$, in the limit $\lim_{k\to\infty} P_k = 0$