
State-space Approach

• In tracking a moving object by remote mea-
surements, we are interested in monitor-
ing how position and velocity of the object
change in time

• The state-space approach to tracking,
navigation, and many other application prob-
lems is based on describing a time-varying
process by a vector of quantities

• These quantities are collectively called the
state of the process

• The evolution of the process over time is
represented as a trajectory in the space of
states, i.e. a successive transition from one
state to another
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State-space Modelling

• State: a vector of measurements for an
object describing its behaviour in time

– Example: [p, v, a] - the position, velocity, and
acceleration of a moving 1D ”object” in time:
v(t + ∆t) = v(t) + a(t)∆t; p(t + ∆t) = p(t) +
v(t+∆t)+v(t)

2
∆t = p(t) + v(t)∆t + a(t)

2
∆t

• State space: the space of all possible states

• Trajectory of an object in the state space:
the evolution of the object’s state in time

t 0 1 2 3 4 5
a(t) 5 5 0 0 0 0
v(t) 0 5 10 10 10 10
p(t) 0 2.5 10 20 30 40
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State-space Trajectory

1D point trajectory in the 3D state space

• for k = 0: ak+1 = ak; vk+1 = vk + ak;
pk+1 = pk + vk + ak

2

• for k = 1,2, . . .: ak+1 = 0; vk+1 = vk + ak;
pk+1 = pk + vk + ak

2

Vision Guided Control COMPSCI 773 S1 T
Kalman Filtering Slide 3



State-space Trajectory: Vector
Description

State of the process: an n × 1 vector xk of

quantities describing the process at time k, e.g.

xk =

⎡
⎢⎣ x1,k

x2,k
x3,k

⎤
⎥⎦ ≡

⎡
⎢⎣ pk

vk
ak

⎤
⎥⎦ ; k = 0,1,2, . . .

Observation, or output: an m × 1 vector yk;

m ≤ n, being a vector or scalar function of the

state vector at time k: yk = Ck(xk)

Process evolution: a vector function of the

state vector at time k: xk+1 = Ak(xk)
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Estimating States: General Case

• Problem: Estimate states xk from obser-
vations yk; k = 0,1,2, . . .

• Basic Assumptions:

– Vector functions Ak(xk) describing the
evolution of states are known for each
k but with uncertainty uk:

xk+1 = Ak(xk) + uk

– How the observation depends on the state
vector is known also with measurement
noise v:

yk = Ck(xk) + vk

– Only statistical properties of the ran-
dom vectors uk and vk are known
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Estimating States: Linear Case

• Linear functions Ak(. . .) and Ck(. . .):

– The n × n state evolution matrices Ak

– The m × n output matrices Ck

• Matrix-vector evolution of the system:

xk+1 = Akxk + uk
yk = Ckxk + vk; k = 0,1,2, . . .

• The matrices Ak and Ck can be considered

as linear approximations of the non-linear

vector functions Ak(. . .) and Ck(. . .)
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Linear Case: an Example

State matrices: A0 =

⎡
⎣ 1 1 1

2
0 1 1
0 0 1

⎤
⎦; Ak =

⎡
⎣ 1 1 1

2
0 1 1
0 0 0

⎤
⎦;

k = 1,2, . . ., and the output matrix Ck =
[

1 0 0
]

k 0 1
x1,k / u1,k 0.0 / 0.1 2.6 / −0.1
x2,k / u2,k 0.0 / −0.1 4.9 / 0.1
x3,k / u3,k 5.0 / 0.2 5.2 / −0.2

yk / vk 0.3 / 0.3 2.3 / −0.3

2 3 4
10.0 / 0.1 20.1 / −0.1 29.8 / 0.1
10.2 / −0.1 9.9 / 0.1 9.8 / 0.0
−0.2 / −0.2 −0.2 / 0.0 0.0 / −0.2

9.7 / −0.3 20.1 / 0.0 29.7 / −0.1

Goal: Given the matrices Ak, Ck, statistics of

uk, vk, and observations yk for k = 0,1, . . ., es-

timate the hidden state vectors xk, k = 0,1, . . .
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Evolution of a Periodic Signal – 1

• Scalar noisy observations yk of a periodic
signal represented with a finite Fourier se-
ries plus a noise term:

yk = c1ej2πf1k + c2ej2πf2k + . . . + cnej2πfnk

where the coefficients ci are complex numbers

• For this periodic function, each frequency
is the state component:

xk =

⎡
⎢⎢⎢⎢⎣

ej2πf1k

ej2πf2k

...
ej2πfnk

⎤
⎥⎥⎥⎥⎦

⇒
xi,k+1 = ej2πfi(k+1)

= ej2πfiej2πfik = ej2πfixi,k︸ ︷︷ ︸
Evolution of a state component
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Evolution of a Periodic Signal – 2

• The state evolution: xk+1 = Akxk where

Ak is the diagonal n × n matrix:

Ak ≡ A =

⎡
⎢⎢⎢⎢⎣

ej2πf1 0 · · · 0
0 ej2πf2 · · · 0
... ... . . . ...
0 0 · · · ej2πfn

⎤
⎥⎥⎥⎥⎦

• The observation yk = Ckxk + vk where Ck

is the 1 × n vector-row:

Ck ≡ C = [c1 c2 . . . cn]

• In this example, there is no uncertainty in

the state evolution: uk = 0
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Estimation of States from
Observations

Let x̂k denote the state estimated from all the
known at time k observations yt; t = 0,1, . . . , k:

x̂k ≡ x̂k(y0, . . . ,yk)

At time k, the estimator has to minimise the
average squared error

ek =
n∑

i=1

|xi,k−x̂i,k|2 ≡
n∑

i=1

|xi,k−x̂k(y0, . . . ,yk)|2

under the simplifying assumptions:

• the state uncertainty uk is totally uncorre-
lated with the measurement noise vk and

• each pair of vectors (uk,ul) or (vk,vl) are
totally uncorrelated for k �= l
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Basic Notation – 1

• An n-dimensional (or n× 1) column vector
x of states has generally complex-valued
components x1, . . . , xn.

• The conjugate, or Hermite transpose of
x, denoted xH, is the 1 × n row vector of
complex-conjugate components [x∗1 . . . x∗n]
If x = a+ jb, then x∗ = a− jb where a and b are the

real and imaginary components of the complex x

• The inner product between two complex
vectors x and y of the same dimension is
defined as xHy =

∑n
i=1 x∗i yi

– Two vectors are perpendicular if xHy = 0

– The vector length is computed as ‖ x ‖=
√

xHx
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Basic Notation – 2

• Conjugate transposition H of an m × n
matrix A with complex elements aα,β is
the n × m matrix AH such that aH(β, α) =
a∗(α, β)

1 ≤ α ≤ m – rows and 1 ≤ β ≤ n – columns in A

• Law of composition for H: (AB)H = BHAH

for matrices A and B

• Outer product xyH of an n × 1 vector x
and an m × 1 vector y is the n × m matrix
of pairwise vector component products:⎡
⎢⎢⎢⎣

x1
x2
...
xn

⎤
⎥⎥⎥⎦ [

y∗1 . . . y∗m
]
=

⎡
⎢⎢⎢⎣

x1y∗1 x1y∗2 . . . x1y∗m
x2y∗1 x2y∗2 . . . x2y∗m
... ... . . . ...
xny∗1 xny∗2 . . . xny∗m

⎤
⎥⎥⎥⎦
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Probability Concepts – 1

• Average or expected value of a continuous

random variable: E{x} =
∞∫

−∞
xp(x)dx

◦ p(x): a probability density function (p.d.f.) of x

◦ E{. . .} denotes the mathematical expectation

◦ Expected vector E{x} of random variables: the
vector of expected elements E{xi}; i = 1, . . . , n

◦ Expected vector sum: E{x + y} = E{x} + E{y}

◦ Expected matrix A: the matrix of expected el-
ements E{A(α, β)}

• Correlation between two random variables
x and y: E{xy∗} =

∞∫
−∞

xy∗p(x, y)dx

◦ p(x, y) is a joint p.d.f. of x and y
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Probability Concepts – 2

• Correlation matrix of two vectors x and y

of random variables is the expected outer

product matrix xyH

• Entries of the correlation matrix are ex-

pected pairwise products of the scalar vec-

tor entries E{xαy∗β}

• The correlation matrix of the error xk − x̂k

is the matrix E{(xk − x̂k) (xk − x̂k)
H}

• Pair of vectors x and y are uncorrelated

if E{xyH} = 0 where 0 – the matrix of ap-

propriate dimensions with zero entries
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State / Observation Statistics
Known by Assumption:

the n×n correlation matrix Uk for uncertainty
uk and the m × m correlation matrix Vk for
measurement noise vk for all k, l = 0, . . . , K:

E{uku
T
l } =

{
Uk if k = l
0 otherwise

E{vkv
T
l } =

{
Vk if k = l
0 otherwise

; E{ukv
T
l } = 0

Components of the latter expected matrices are ex-

pected pairwise products of vector components such as

E{uk,αul,β}; α, β = 1, . . . , n, E{vk,αvl,β}; α, β = 1, . . . , m, or

E{uk,αvl,β}; α = 1, . . . , n; β = 1, . . . , m

Both the uncertainty and measurement noise
are centred: E{uk} = E{vk} = 0; k = 0,1, . . . , K
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Rudolf Kalman’s Approach

The search for a linear estimator:

x̂k =
k∑

t=0

Gtyt

where Gk; k = 0,1, . . . , K, are n × m gain ma-
trices to be determined

The desired gain matrices have to minimise the
mean error E{‖ xk − x̂k ‖2
Initial estimate x̂0 and correlation matrix P0 of estima-

tion error are assumed to be known

The Kalman’s observation was that this linear
estimate should evolve recursively just as the
system’s states are evolving themselves (!!)

This brilliant observation became a cornerstone of the

most popular at present approach to linear filtering called

Kalman filtering
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Constructing a Kalman Filter – 1

Suppose an optimal linear estimate x̂k−1 based
on observations y0, y1, . . . , yk−1 is already
constructed

Then x̂i
k

def
= Ak−1x̂k−1 is the best guess of x̂k

before making the observation yk at time k

It is the natural evolution of the estimated state vector
x̂k−1 by the linear system dynamics in Slide 6

The superscript “i” indicates this is an intermediate

estimate before constructing x̂k

yi
k = Ckx̂

i
k is the best prediction of yk before

the actual measurement

Kalman’s proposal: the optimal solution for
x̂k should be a linear combination of x̂i

k and
the difference between yk and yi

k:

x̂k = x̂i
k + Gk

(
yk − Ckx̂

i
k

)
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Constructing a Kalman Filter – 2

If yk = yi
k, then x̂k = x̂i

k = Ak−1x̂k−1, i.e. the estimate

evolves purely by what is known about the process

Optimal gain matrix Gk has to minimise the

mean error E{‖ xk − x̂k ‖2} in Slide 16:

E

{
‖

(
xk − x̂i

k

)
− Gk

(
yk − Ckx̂

i
k

)
‖2

}
Solution: by taking and setting to zero the derivative

w.r.t. to the matrix entries

Theorem 1: Let a and b be random vectors.

Then the matrix G minimising E{‖ a − Gb ‖2}
is as follows:

G = E

{
abH

} (
E

{
bbH

})−1

providing the correlation matrix E

{
bbH

}
is in-

vertible.
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Proof of Theorem 1 – (a)

Derivative of a scalar function f w.r.t. an

n × m matrix Q is defined as

∂f

∂Q
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f
∂Q1,1

∂f
∂Q2,1

. . . ∂f
∂Qn,1

∂f
∂Q1,2

∂f
∂Q2,2

. . . ∂f
∂Qn,2

... ... . . . ...
∂f

∂Q1,m

∂f
∂Q2,m

. . . ∂f
∂Qn,m

⎤
⎥⎥⎥⎥⎥⎥⎦

For a function f = tHQs where t and s are

arbitrary n × 1 and m × 1 vectors, respectively,

the derivative is

∂

∂Q

(
tHQs

)
= stH

The right hand side matrix is of the dimension m × n

Each its (β, α)-entry t∗αsβ is precisely what is obtained

by differentiating the scalar function f w.r.t. the (α, β)-

entry Qα,β of Q
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Proof of Theorem 1 – (b)

Expanding E{‖ a − Gb ‖2} gives

E

{
(a − Gb)H (a − Gb)

}
= E

{(
aH − bHGH

)
(a − Gb)

}
= E

{
aHa − bHGHa − aHGb + bHGHGb

}
= E

{
aHa

} − E
{
bHGHa

} − E
{
aHGb

}
+ E

{
bHGHGb

}
Differentiating this with respect to the matrix G may

seen difficult because both G and GH are appearing.

It can be proven that the elements of G can be treated

as independent from the elements of GH although they

are not of course

Setting the derivative of the above expression

w.r.t. GH equal to zero produces the equation

−E

{
abH

}
+ GE

{
bbH

}
= 0

It gives the solution G = E

{
abH

} (
E

{
bbH

})−1
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Constructing a Kalman Filter – 3

To optimise the gain matrix Gk, a = xk − x̂i
k

and b = yk − Ckx̂
i
k, so that

E

{
abH

}
= E

{(
xk − x̂i

k

) (
yk − Ckx̂

i
k

)H
}

= E

{(
xk − x̂i

k

) (
Ckxk + vk − Ckx̂

i
k

)H
}

= E

{(
xk − x̂i

k

) (
xk − x̂i

k

)H
CH

k

}
+E

{(
xk − x̂i

k

)
vH

k

}
The last expectation on the right is zero as the inter-

mediate estimate x̂i
k depends only on y0, y1, . . . , yk−1

including only the noise terms vi and uncertainties ui for

i < k that are uncorrelated with the “new” noise vk

Thus, E

{
abH

}
= E

{(
xk − x̂i

k

) (
xk − x̂i

k

)H
CH

k

}
= E

{(
xk − x̂i

k

) (
xk − x̂i

k

)H
}

CH
k ≡ Pi

kC
H
k

where Pi
k = E

{(
xk − x̂i

k

) (
xk − x̂i

k

)H
}

denotes the corre-

lation matrix for the “intermediate” error xk − x̂i
k
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Constructing a Kalman Filter – 4

Similar considerations result in a following sim-
ple form for

E

{
bbH

}
= E

{(
yk − Ckx̂

i
k

) (
yk − Ckx̂

i
k

)H
}

= E

{(
Ckxk + vk − Ckx̂

i
k

) (
Ckxk + vk − Ckx̂

i
k

)H
}

= E

{(
Ck

(
xk − x̂i

k

)
+ vk

) ((
xk − x̂i

k

)H
CH

k + vH
k

)}
= CkP

i
kC

H
k + Vk

where Vk = E
{
vkvH

k

}
is the measurement noise correla-

tion matrix.

By Theorem 1, the optimal gain matrix is
Gk = Pi

kC
H
k

(
CkP

i
kC

H
k + Vk

)−1

assuming that the inverse on the right hand side exists

The correlation matrix Pi
k is also computed re-

cursively starting from the matrix P0 known by
assumption
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Constructing a Kalman Filter – 5

Since xk = Ak−1xk−1+uk−1 and x̂i
k = Ak−1x̂k−1,

Pi
k = E

{(
xk − x̂i

k

) (
xk − x̂i

k

)H
}

= E

{(
Ak−1xk−1 + uk−1 − x̂i

k

) (
Ak−1xk−1 + uk−1 − x̂i

k

)H
}

= E

{
(Ak−1 (xk−1 − x̂k−1) + uk−1) (Ak−1 (xk−1 − x̂k−1) + uk−1)

H
}

After some rearrangement and elimination of

zero-valued expectations:

Pi
k = Ak−1Pk−1A

H
k−1 + Uk−1

where Pk−1 = E

{
(xk−1 − x̂k−1) (xk−1 − x̂k−1)

H
}

denotes

the correlation matrix of estimation errors and Uk−1

is the correlation matrix of uncertainties at time k − 1

Substituting the formula for x̂k to the defini-

tion of Pk and with some amount of algebra,

one obtains that

Pk = Pi
k − GkCkP

i
k
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How the Kalman Filter Works

Known values: yi, Vi, and Ui, Ai, and Ci for
0 ≤ i ≤ k at each time k

• Initialisation k = 0: Choose or guess suit-
able x̂0 and P0

• Iteration k = 1,2, . . .: Given x̂k−1 and Pk−1,
compute:

1. Pi
k = Ak−1Pk−1A

H
k−1 + Uk−1

2. Gk = Pi
kC

H
k

(
CkP

i
kC

H
k + Vk

)−1

3. x̂i
k = Ak−1x̂k−1

4. x̂k = x̂i
k + Gk

(
yk − Ckx̂

i
k

)

5. Pk = Pi
k − GkCkP

i
k
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Example: 1D Process

Fixed state xk+1 = xk
Noisy measurements yk = xk + vk
E{vk} = 0; E{v2

k} = σ2 for all k
E{x0} = x̂0 = 0; E{x2

0} = P0 > 0
⇒ Ak = Ck = 1; Uk = 0, and Vk = σ2 for all k

In this case, x̂i
k = x̂k−1, P i

k = Pk−1 for all k so that

the intermediate steps are unnecessary (the state is not

changing):

Gk =
Pk−1

Pk−1+σ2

Pk = Pk−1 − P2
k−1

Pk−1+σ2 =
Pk−1σ2

Pk−1+σ2

x̂k = x̂k−1 +
Pk−1

Pk−1+σ2

(
yk − x̂k−1

)
Case 1: σ = 0 (no measurement noise) → x̂k = yk

Case 2: σ > 0; P0 = 0 (so all xk = 0) → Gk = 0; Pk = 0,
and x̂k = 0 for all k

Case 3: σ > 0; P0 > 0 → Pk < Pk−1 (decreasing error

variance), and since P0 > 0, in the limit limk→∞Pk = 0
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