State-space Approach

- In tracking a moving object by remote measurements, we are interested in monitoring how position and velocity of the object change in time
- The **state-space approach** to tracking, navigation, and many other application problems is based on describing a time-varying process by a vector of quantities
- These quantities are collectively called the **state of the process**
- The evolution of the process over time is represented as a trajectory in the space of states, i.e. a successive transition from one state to another

State-space Modelling

- **State**: a vector of measurements for an object describing its behaviour in time
	- **–** *Example*: [p, v, a] the position, velocity, and acceleration of a moving 1D "object" in time: $v(t + \Delta t) = v(t) + a(t)\Delta t$; $p(t + \Delta t) = p(t) +$ $\frac{v(t+\Delta t)+v(t)}{2}\Delta t = p(t)+v(t)\Delta t + \frac{a(t)}{2}\Delta t$
- **State space**: the space of all possible states
- **Trajectory** of an object in the state space: the evolution of the object's state in time

State-space Trajectory

1D point trajectory in the 3D state space

- for $k = 0$: $a_{k+1} = a_k$; $v_{k+1} = v_k + a_k$; $p_{k+1} = p_k + v_k + \frac{a_k}{2}$
- for $k = 1, 2, \ldots$: $a_{k+1} = 0$; $v_{k+1} = v_k + a_k$; $p_{k+1} = p_k + v_k + \frac{a_k}{2}$

State-space Trajectory: Vector Description

State of the process: an $n \times 1$ vector \mathbf{x}_k of quantities describing the process at time k , e.g.

$$
\mathbf{x}_{k} = \begin{bmatrix} x_{1,k} \\ x_{2,k} \\ x_{3,k} \end{bmatrix} \equiv \begin{bmatrix} p_{k} \\ v_{k} \\ a_{k} \end{bmatrix}; \quad k = 0, 1, 2, \dots
$$

Observation, or output: an $m \times 1$ vector y_k ; $m \leq n$, being a vector or scalar function of the state vector at time k: $y_k = C_k(x_k)$

Process evolution: a vector function of the state vector at time k : $\mathbf{x}_{k+1} = \mathbf{A}_k(\mathbf{x}_k)$

Estimating States: General Case

- **Problem**: Estimate states x_k from observations y_k ; $k = 0, 1, 2, ...$
- **Basic Assumptions**:
	- $-$ Vector functions $A_k(x_k)$ describing the evolution of states are known for each k but with uncertainty \mathbf{u}_k :

$$
\mathbf{x}_{k+1} = \mathbf{A}_k(\mathbf{x}_k) + \mathbf{u}_k
$$

– How the observation depends on the state vector is known also with measurement noise **v**:

$$
\mathbf{y}_k = \mathbf{C}_k(\mathbf{x}_k) + \mathbf{v}_k
$$

– Only statistical properties of the random vectors \mathbf{u}_k and \mathbf{v}_k are known

Estimating States: Linear Case

• Linear functions $A_k(...)$ and $C_k(...)$:

 $-$ The $n \times n$ state evolution matrices A_k

 $-$ The $m \times n$ output matrices C_k

• Matrix-vector evolution of the system:

$$
\begin{array}{rcl}\n\mathbf{x}_{k+1} & = & \mathbf{A}_k \mathbf{x}_k + \mathbf{u}_k \\
\mathbf{y}_k & = & \mathbf{C}_k \mathbf{x}_k + \mathbf{v}_k; \quad k = 0, 1, 2, \dots\n\end{array}
$$

• The matrices A_k and C_k can be considered as linear approximations of the non-linear vector functions $A_k(...)$ and $C_k(...)$

Linear Case: an Example

State matrices: $A_0 =$ \lceil $\overline{}$ 1 1 $\frac{1}{2}$ 0 1 $\bar{1}$ 001 ⎤ $\big|$; $\mathbf{A}_k =$ \lceil $\overline{}$ 1 1 $\frac{1}{2}$ 0 1 $\bar{1}$ 000 ⎤ \vert ; $k = 1, 2, \ldots$, and the output matrix $\mathbf{C}_k = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

\boldsymbol{k}	$\overline{0}$	$1 \quad \text{or} \quad$
$x_{1,k}$ / $u_{1,k}$	0.0 / 0.1	$2.6 / -0.1$
$x_{2,k}$ / $u_{2,k}$	$0.0 / -0.1$	4.9 / 0.1
$x_{3,k}$ / $u_{3,k}$	5.0 / 0.2	$5.2 / -0.2$
y_k / v_k	0.3 / 0.3	$2.3 / -0.3$
$\overline{2}$	$\overline{3}$	$\overline{4}$
10.0 / 0.1	$20.1 / -0.1$	29.8 / 0.1
$10.2 / -0.1$	9.9 / 0.1	9.8 / 0.0
-0.2 / -0.2	-0.2 / 0.0	$0.0 / -0.2$
$9.7 / -0.3$	20.1 / 0.0	$29.7 / -0.1$

Goal: Given the matrices A_k , C_k , statistics of \mathbf{u}_k , \mathbf{v}_k , and observations \mathbf{y}_k for $k = 0, 1, \ldots$, estimate the hidden state vectors \mathbf{x}_k , $k = 0, 1, \ldots$

Evolution of a Periodic Signal – 1

• Scalar noisy observations y_k of a periodic signal represented with a finite Fourier series plus a noise term:

$$
y_k = c_1 e^{j2\pi f_1 k} + c_2 e^{j2\pi f_2 k} + \dots + c_n e^{j2\pi f_n k}
$$

where the coefficients c_i are complex numbers

• For this periodic function, each frequency is the state component:

$$
\mathbf{x}_{k} = \begin{bmatrix} e^{j2\pi f_{1}k} \\ e^{j2\pi f_{2}k} \\ \vdots \\ e^{j2\pi f_{nk}} \end{bmatrix}
$$

\n
$$
\Rightarrow \frac{x_{i,k+1} = e^{j2\pi f_{i}(k+1)}}{e^{j2\pi f_{i}}e^{j2\pi f_{ik}}} = e^{j2\pi f_{i}}x_{i,k}
$$

  Evolution of a state component

Evolution of a Periodic Signal – 2

• The state evolution: $\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k$ where \mathbf{A}_k is the diagonal $n \times \overline{n}$ matrix:

$$
\mathbf{A}_{k} \equiv \mathbf{A} = \begin{bmatrix} e^{j2\pi f_{1}} & 0 & \cdots & 0 \\ 0 & e^{j2\pi f_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{j2\pi f_{n}} \end{bmatrix}
$$

• The observation $y_k = C_k \mathbf{x}_k + \mathbf{v}_k$ where C_k is the $1 \times n$ vector-row:

$$
\mathbf{C}_k \equiv \mathbf{C} = [c_1 \ c_2 \ \dots \ c_n]
$$

• In this example, there is no uncertainty in the state evolution: $u_k = 0$

Estimation of States from Observations

Let $\hat{\mathbf{x}}_k$ denote the state estimated from all the known at time k observations y_t ; $t = 0, 1, \ldots, k$:

$$
\widehat{\mathbf{x}}_k \equiv \widehat{\mathbf{x}}_k(\mathbf{y}_0,\ldots,\mathbf{y}_k)
$$

At time k , the estimator has to minimise the average squared error

$$
e_k = \sum_{i=1}^n |x_{i,k} - \hat{x}_{i,k}|^2 \equiv \sum_{i=1}^n |x_{i,k} - \hat{x}_k(y_0, \dots, y_k)|^2
$$

under the simplifying assumptions:

- the state uncertainty \mathbf{u}_k is totally uncorrelated with the measurement noise v_k and
- each pair of vectors $(\mathbf{u}_k, \mathbf{u}_l)$ or $(\mathbf{v}_k, \mathbf{v}_l)$ are totally uncorrelated for $k \neq l$

Basic Notation – 1

- An *n*-dimensional (or $n \times 1$) column vector **x** of states has generally complex-valued components x_1, \ldots, x_n .
- The conjugate, or Hermite transpose of **x**, denoted x^H , is the $1 \times n$ row vector of complex-conjugate components $[x_1^* \dots x_n^*]$

If $x = a + jb$, then $x^* = a - jb$ where a and b are the real and imaginary components of the complex x

• The inner product between two complex vectors **x** and **y** of the same dimension is defined as $\mathbf{x}^\textsf{H} \mathbf{y} = \sum_{i=1}^n x_i^* y_i$

 $-$ Two vectors are perpendicular if $x^Hy = 0$

 $-$ The vector length is computed as $\| \mathbf{x} \| = \sqrt{\mathbf{x}^{\mathsf{H}} \mathbf{x}}$

Basic Notation – 2

• **Conjugate transposition** H of an $m \times n$ matrix A with complex elements $a_{\alpha,\beta}$ is the $n \times m$ matrix A^H such that $a^H(\beta, \alpha) =$ $a^*(\alpha, \beta)$

 $1 \le \alpha \le m$ – rows and $1 \le \beta \le n$ – columns in A

- Law of composition for H: $(AB)^H = B^H A^H$ for matrices **A** and **B**
- Outer product xy^H of an $n \times 1$ vector x and an $m \times 1$ vector y is the $n \times m$ matrix of pairwise vector component products:

 $\sqrt{ }$ \perp $\overline{}$ \perp $\overline{}$ $\overline{x_1}$ $\frac{1}{x_2}$ $\ddot{\cdot}$. \overline{x}_n ⎤ $\begin{array}{c} \hline \end{array}$ $\frac{1}{2}$ $\begin{array}{c} \hline \end{array}$ \vert $[y_1^* \dots y_m^*] =$ \lceil \perp $\frac{1}{2}$ \perp \overline{a} $x_1y_1^*$ $x_1y_2^*$... $x_1y_m^*$ $x_2y_1^*$ $x_2y_2^*$... $x_2y_n^*$ $\begin{array}{rcl} x_2y_1^* & x_2y_2^* & \dots & x_2y_m^* \ \vdots & \vdots & \ddots & \vdots \end{array}$ $x_n y_1^* x_n y_2^* \dots x_n y_m^*$ ⎤ $\begin{array}{c} \hline \end{array}$ $\frac{1}{2}$ $\begin{array}{c} \hline \end{array}$ \vert

Probability Concepts – 1

- **Average** or expected value of a continuous random variable: $\mathbb{E}\lbrace x \rbrace = \int_{x_0}^{\infty}$ \int $-\infty$ $xp(x)dx$
	- \circ $p(x)$: a probability density function (p.d.f.) of x
	- ^E{...} denotes the mathematical expectation
	- Expected vector ^E{**x**} of random variables: the vector of expected elements $\mathbb{E}\{x_i\}$; $i=1,\ldots,n$
	- \circ Expected vector sum: $\mathbb{E}\{x + y\} = \mathbb{E}\{x\} + \mathbb{E}\{y\}$
	- Expected matrix **A**: the matrix of expected elements $\mathbb{E}\{A(\alpha,\beta)\}\$
- **Correlation** between two random variables x and y: $\mathbb{E}\{xy^*\} = \int$ $\sqrt{ }$ $-\infty$ $xy^*p(x, y)dx$

 \circ $p(x, y)$ is a joint p.d.f. of x and y

Probability Concepts – 2

- **Correlation matrix** of two vectors **x** and **y** of random variables is the expected outer product matrix **xy**^H
- Entries of the correlation matrix are expected pairwise products of the scalar vector entries $\mathbb{E}\{x_{\alpha}y_{\beta}^*\}$
- The correlation matrix of the error $\mathbf{x}_k \hat{\mathbf{x}}_k$ is the matrix $\mathbb{E}\{(\mathbf{x}_k - \hat{\mathbf{x}}_k)(\mathbf{x}_k - \hat{\mathbf{x}}_k)^{\mathsf{H}}\}$
- Pair of vectors **x** and **y** are **uncorrelated** if $\mathbb{E}\{xy^H\} = 0$ where $0 -$ the matrix of appropriate dimensions with zero entries

State / Observation Statistics Known by Assumption:

the $n \times n$ correlation matrix U_k for uncertainty u_k and the $m \times m$ correlation matrix V_k for measurement noise v_k for all $k, l = 0, \ldots, K$:

$$
\mathbb{E}\{\mathbf{u}_k \mathbf{u}_l^{\mathsf{T}}\} = \begin{cases} \mathbf{U}_k & \text{if } k = l \\ \mathbf{0} & \text{otherwise} \end{cases}
$$

$$
\mathbb{E}\{\mathbf{v}_k\mathbf{v}_l^{\mathsf{T}}\} = \left\{\begin{array}{ll}\mathbf{V}_k & \text{if } k = l \\
\mathbf{0} & \text{otherwise}\n\end{array}; \ \mathbb{E}\{\mathbf{u}_k\mathbf{v}_l^{\mathsf{T}}\} = \mathbf{0}\right.
$$

Components of the latter expected matrices are expected pairwise products of vector components such as $\mathbb{E}\{u_{k,\alpha}u_{l,\beta}\};\;\alpha,\beta=1,\ldots,n,\;\mathbb{E}\{v_{k,\alpha}v_{l,\beta}\};\;\alpha,\beta=1,\ldots,m,$ or $\mathbb{E}\{u_{k,\alpha}v_{l,\beta}\};\;\alpha=1,\ldots,n;\;\beta=1,\ldots,m$

Both the uncertainty and measurement noise are centred: $\mathbb{E}\{\mathbf{u}_k\} = \mathbb{E}\{\mathbf{v}_k\} = 0$; $k = 0, 1, ..., K$

Rudolf Kalman's Approach

The search for a linear estimator:

$$
\hat{\mathbf{x}}_k = \sum_{t=0}^k \mathbf{G}_t \mathbf{y}_t
$$

where G_k ; $k = 0, 1, \ldots, K$, are $n \times m$ gain matrices to be determined

The desired gain matrices have to minimise the mean error $\mathbb{E}\{\|\mathbf{x}_k - \hat{\mathbf{x}}_k\|^2\}$

Initial estimate $\hat{\mathbf{x}}_0$ and correlation matrix \mathbf{P}_0 of estimation error are assumed to be known

The Kalman's observation was that this linear estimate should **evolve recursively** just as the system's states are evolving themselves (!!)

This brilliant observation became a cornerstone of the most popular at present approach to linear filtering called **Kalman filtering**

Suppose an optimal linear estimate ˆ**x**k−¹ based on observations **^y**0, **^y**1, ..., **^y**k−¹ is already constructed

Then $\widehat{\mathbf{x}}_k^{\mathsf{i}}$ def $\stackrel{\text{def}}{=}$ $\mathbf{A}_{k-1}\hat{\mathbf{x}}_{k-1}$ is the **best guess** of $\hat{\mathbf{x}}_k$ before making the observation y_k at time k

It is the natural evolution of the estimated state vector $\hat{\mathbf{x}}_{k-1}$ by the linear system dynamics in Slide 6

The superscript "i" indicates this is an **intermediate** estimate before constructing $\hat{\mathbf{x}}_k$

 $\mathbf{y}_k^\mathsf{i} = \mathbf{C}_k \mathbf{\widehat{x}}_k^\mathsf{i}$ is the <code>best prediction</code> of \mathbf{y}_k before the actual measurement

Kalman's proposal: the optimal solution for $\widehat{\mathbf{x}}_k$ should be a linear combination of $\widehat{\mathbf{x}}_k^{\mathsf{i}}$ and the difference between y_k and y_k^i .

$$
\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^{\mathsf{i}} + \mathbf{G}_k \left(\mathbf{y}_k - \mathbf{C}_k \hat{\mathbf{x}}_k^{\mathsf{i}} \right)
$$

If $\mathbf{y}_k = \mathbf{y}_k^{\mathsf{i}}$, then $\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^{\mathsf{i}} = \mathbf{A}_{k-1}\hat{\mathbf{x}}_{k-1}$, i.e. the estimate evolves purely by what is known about the process

Optimal gain matrix G_k has to minimise the mean error $\mathbb{E}\{\|\mathbf{x}_k - \hat{\mathbf{x}}_k\|^2\}$ in Slide 16:

$$
\mathbb{E}\left\{\|\left(\mathbf{x}_k-\hat{\mathbf{x}}_k^{\mathsf{i}}\right)-\mathbf{G}_k\left(\mathbf{y}_k-\mathbf{C}_k\hat{\mathbf{x}}_k^{\mathsf{i}}\right)\|^2\right\}
$$

Solution: by taking and setting to zero the derivative w.r.t. to the matrix entries

Theorem 1: Let **a** and **b** be random vectors. Then the matrix **G** minimising $\mathbb{E}\{\|\mathbf{a} - \mathbf{G}\mathbf{b}\|^2\}$ is as follows:

$$
G=\mathbb{E}\left\{ab^{H}\right\}\left(\mathbb{E}\left\{bb^{H}\right\}\right)^{-1}
$$

providing the correlation matrix $\mathbb{E} \left\{\mathbf{bb}^{\mathsf{H}}\right\}$ is invertible.

Proof of Theorem 1 – (a)

Derivative of a scalar function f **w.r.t. an** $n \times m$ **matrix Q** is defined as

$$
\frac{\partial f}{\partial \mathbf{Q}} = \begin{bmatrix} \frac{\partial f}{\partial Q_{1,1}} & \frac{\partial f}{\partial Q_{2,1}} & \cdots & \frac{\partial f}{\partial Q_{n,1}} \\ \frac{\partial f}{\partial Q_{1,2}} & \frac{\partial f}{\partial Q_{2,2}} & \cdots & \frac{\partial f}{\partial Q_{n,2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial Q_{1,m}} & \frac{\partial f}{\partial Q_{2,m}} & \cdots & \frac{\partial f}{\partial Q_{n,m}} \end{bmatrix}
$$

For a function $f = t^H Q$ s where t and s are arbitrary $n \times 1$ and $m \times 1$ vectors, respectively, the derivative is

$$
\frac{\partial}{\partial Q}\left(t^H Q s\right) = s t^H
$$

The right hand side matrix is of the dimension $m \times n$

Each its (β, α) -entry $t^*_{\alpha}s_{\beta}$ is precisely what is obtained by differentiating the scalar function f w.r.t. the (α, β) entry Qα,β of **Q**

Proof of Theorem 1 – (b)

Expanding $\mathbb{E}\{\|\mathbf{a} - \mathbf{G}\mathbf{b}\|^2\}$ gives

$$
\mathbb{E}\left\{(\mathbf{a}-\mathbf{G}\mathbf{b})^{H}(\mathbf{a}-\mathbf{G}\mathbf{b})\right\}\n= \mathbb{E}\left\{(\mathbf{a}^{H}-\mathbf{b}^{H}\mathbf{G}^{H})(\mathbf{a}-\mathbf{G}\mathbf{b})\right\}\n= \mathbb{E}\left\{\mathbf{a}^{H}\mathbf{a}-\mathbf{b}^{H}\mathbf{G}^{H}\mathbf{a}-\mathbf{a}^{H}\mathbf{G}\mathbf{b}+\mathbf{b}^{H}\mathbf{G}^{H}\mathbf{G}\mathbf{b}\right\}\n= \mathbb{E}\left\{\mathbf{a}^{H}\mathbf{a}\right\}-\mathbb{E}\left\{\mathbf{b}^{H}\mathbf{G}^{H}\mathbf{a}\right\}-\mathbb{E}\left\{\mathbf{a}^{H}\mathbf{G}\mathbf{b}\right\}+\mathbb{E}\left\{\mathbf{b}^{H}\mathbf{G}^{H}\mathbf{G}\mathbf{b}\right\}
$$

Differentiating this with respect to the matrix **G** may seen difficult because both G and G^H are appearing.

It can be proven that the elements of **G** can be treated as independent from the elements of G^H although they are not of course

Setting the derivative of the above expression w.r.t. G^H equal to zero produces the equation $-\mathbb{E}\left\{\mathbf{a}\mathbf{b}^{\mathsf{H}}\right\} + \mathbf{G}\mathbb{E}\left\{\mathbf{b}\mathbf{b}^{\mathsf{H}}\right\} = \mathbf{0}$

It gives the solution $\mathbf{G} = \mathbb{E}\left\{\mathbf{a}\mathbf{b}^\textsf{H}\right\} \left(\mathbb{E}\left\{\mathbf{b}\mathbf{b}^\textsf{H}\right\} \right)$ $\binom{1}{-1}$

To optimise the gain matrix G_k , $a = x_k - \hat{x}_k^i$ and $\mathbf{b} = \mathbf{y}_k - \mathbf{C}_k \hat{\mathbf{x}}_k^{\mathsf{i}}$, so that

$$
\mathbb{E}\left\{\mathbf{a}\mathbf{b}^{\mathsf{H}}\right\} = \mathbb{E}\left\{ \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{i}\right) \left(\mathbf{y}_{k} - \mathbf{C}_{k}\hat{\mathbf{x}}_{k}^{i}\right)^{\mathsf{H}} \right\} \n= \mathbb{E}\left\{ \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{i}\right) \left(\mathbf{C}_{k}\mathbf{x}_{k} + \mathbf{v}_{k} - \mathbf{C}_{k}\hat{\mathbf{x}}_{k}^{i}\right)^{\mathsf{H}} \right\} \n= \mathbb{E}\left\{ \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{i}\right) \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{i}\right)^{\mathsf{H}} \mathbf{C}_{k}^{\mathsf{H}} \right\} \n+ \mathbb{E}\left\{ \left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{i}\right) \mathbf{v}_{k}^{\mathsf{H}} \right\}
$$

The last expectation on the right is zero as the intermediate estimate ˆ**x**ⁱ ^k depends only on **y**0, **y**1, ..., **y**^k−¹ including only the noise terms v_i and uncertainties u_i for $i < k$ that are uncorrelated with the "new" noise v_k $\textsf{Thus, } \mathbb{E}\left\{\textbf{a}\textbf{b}^{\textsf{H}}\right\} = \mathbb{E}\left\{\left(\textbf{x}_k - \widehat{\textbf{x}}_k^{\textsf{i}}\right)\left(\textbf{x}_k - \widehat{\textbf{x}}_k^{\textsf{i}}\right)^{\textsf{H}}\textbf{C}_k^{\textsf{H}}\right\}$ \mathcal{L} $=\mathbb{E}\left\{\left(\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k}^{\mathsf{i}}\right)\left(\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k}^{\mathsf{i}}\right)\right\}$ $\left. \right) ^{\mathsf{H}}\left. \right\} \mathbf{C}_{k}^{\mathsf{H}}\equiv\mathbf{P}_{k}^{\mathsf{i}}\mathbf{C}_{k}^{\mathsf{H}}$ where $\mathbf{P}_k^\mathsf{i} = \mathbb{E} \left\{ \left(\mathbf{x}_k - \widehat{\mathbf{x}}_k^\mathsf{i} \right) \left(\mathbf{x}_k - \widehat{\mathbf{x}}_k^\mathsf{i} \right)^\mathsf{H} \right\}$ denotes the correlation matrix for the "intermediate" error $\mathbf{x}_k - \widehat{\mathbf{x}}_k^{\text{i}}$

Similar considerations result in a following simple form for

$$
\mathbb{E}\left\{\mathbf{b}\mathbf{b}^{\mathsf{H}}\right\} = \mathbb{E}\left\{ \left(\mathbf{y}_{k} - \mathbf{C}_{k}\hat{\mathbf{x}}_{k}^{i}\right) \left(\mathbf{y}_{k} - \mathbf{C}_{k}\hat{\mathbf{x}}_{k}^{i}\right)^{\mathsf{H}} \right\}
$$
\n
$$
= \mathbb{E}\left\{ \left(\mathbf{C}_{k}\mathbf{x}_{k} + \mathbf{v}_{k} - \mathbf{C}_{k}\hat{\mathbf{x}}_{k}^{i}\right) \left(\mathbf{C}_{k}\mathbf{x}_{k} + \mathbf{v}_{k} - \mathbf{C}_{k}\hat{\mathbf{x}}_{k}^{i}\right)^{\mathsf{H}} \right\}
$$
\n
$$
= \mathbb{E}\left\{ \left(\mathbf{C}_{k}\left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{i}\right) + \mathbf{v}_{k}\right) \left(\left(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{i}\right)^{\mathsf{H}} \mathbf{C}_{k}^{\mathsf{H}} + \mathbf{v}_{k}^{\mathsf{H}}\right)\right\}
$$
\n
$$
= \mathbf{C}_{k}\mathbf{P}_{k}^{i}\mathbf{C}_{k}^{\mathsf{H}} + \mathbf{V}_{k}
$$

where $\mathbf{V}_k = \mathbb{E}\left\{\mathbf{v}_k \mathbf{v}_k^{\mathsf{H}}\right\}$ is the measurement noise correlation matrix.

By Theorem 1, the optimal gain matrix is $G_k = P_k^{\dagger} C_k^{\dagger}$ $\left(\mathbf{C}_k\mathbf{P}_k^{\text{i}}\mathbf{C}_k^{\text{H}} + \mathbf{V}_k\right)$ $\sqrt{-1}$ assuming that the inverse on the right hand side exists

The correlation matrix P_k^i is also computed recursively starting from the matrix P_0 known by assumption

Since
$$
\mathbf{x}_k = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{u}_{k-1}
$$
 and $\hat{\mathbf{x}}_k^i = \mathbf{A}_{k-1} \hat{\mathbf{x}}_{k-1}$,
\n
$$
P_k^i = \mathbb{E} \left\{ (\mathbf{x}_k - \hat{\mathbf{x}}_k^i) (\mathbf{x}_k - \hat{\mathbf{x}}_k^i)^H \right\}
$$
\n
$$
= \mathbb{E} \left\{ (\mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{u}_{k-1} - \hat{\mathbf{x}}_k^i) (\mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{u}_{k-1} - \hat{\mathbf{x}}_k^i)^H \right\}
$$
\n
$$
= \mathbb{E} \left\{ (\mathbf{A}_{k-1} (\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1}) + \mathbf{u}_{k-1}) (\mathbf{A}_{k-1} (\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1}) + \mathbf{u}_{k-1})^H \right\}
$$

After some rearrangement and elimination of zero-valued expectations:

$$
\mathbf{P}_k^{\mathsf{i}} = \mathbf{A}_{k-1} \mathbf{P}_{k-1} \mathbf{A}_{k-1}^{\mathsf{H}} + \mathbf{U}_{k-1}
$$

where $\mathbf{P}_{k-1} \, = \, \mathbb{E} \left\{ \left(\mathbf{x}_{k-1} - \widehat{\mathbf{x}}_{k-1} \right) \left(\mathbf{x}_{k-1} - \widehat{\mathbf{x}}_{k-1} \right)^\textsf{H} \right\}$ denotes the correlation matrix of estimation errors and U_{k-1} is the correlation matrix of uncertainties at time $k - 1$ Substituting the formula for $\hat{\mathbf{x}}_k$ to the definition of P_k and with some amount of algebra, one obtains that

$$
\mathbf{P}_k = \mathbf{P}_k^{\mathsf{i}} - \mathbf{G}_k \mathbf{C}_k \mathbf{P}_k^{\mathsf{i}}
$$

How the Kalman Filter Works

Known values: y_i , V_i , and U_i , A_i , and C_i for $0 \leq i \leq k$ at each time k

- **Initialisation** $k = 0$: Choose or guess suitable $\hat{\mathbf{x}}_0$ and \mathbf{P}_0
- **Iteration** $k = 1, 2, \ldots$: Given $\hat{\mathbf{x}}_{k-1}$ and \mathbf{P}_{k-1} , compute:
	- 1. $P_k^i = A_{k-1}P_{k-1}A_{k-1}^H + U_{k-1}$
	- 2. $G_k = P_k^{\dagger} C_k^{\dagger}$ $\left(\mathbf{C}_k\mathbf{P}_k^{\text{i}}\mathbf{C}_k^{\text{H}} + \mathbf{V}_k\right)$ \setminus -1
	- 3. $\hat{x}_k^i = A_{k-1}\hat{x}_{k-1}$
	- 4. $\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^{\mathsf{i}} + \mathbf{G}_k \left(\mathbf{y}_k \mathbf{C}_k \hat{\mathbf{x}}_k^{\mathsf{i}}\right)$ \setminus

5.
$$
\mathbf{P}_k = \mathbf{P}_k^{\mathsf{i}} - \mathbf{G}_k \mathbf{C}_k \mathbf{P}_k^{\mathsf{i}}
$$

Example: 1D Process

Fixed state $x_{k+1} = x_k$ Noisy measurements $y_k = x_k + v_k$ $\mathbb{E}\{v_k\} = 0$; $\mathbb{E}\{v_k^2\} = \sigma^2$ for all k $\mathbb{E}\{x_0\} = \hat{x}_0 = 0$; $\mathbb{E}\{x_0^2\} = P_0 > 0$ $\Rightarrow A_k = C_k = 1$; $U_k = 0$, and $V_k = \sigma^2$ for all k In this case, $\widehat{x}_{k}^{\text{!}} = \widehat{x}_{k-1}$, $P_{k}^{\text{!}} = P_{k-1}$ for all k so that

the intermediate steps are unnecessary (the state is not changing):

$$
G_k = \frac{P_{k-1}}{P_{k-1} + \sigma^2}
$$

\n
$$
P_k = P_{k-1} - \frac{P_{k-1}^2}{P_{k-1} + \sigma^2} = \frac{P_{k-1}\sigma^2}{P_{k-1} + \sigma^2}
$$

\n
$$
\hat{x}_k = \hat{x}_{k-1} + \frac{P_{k-1}}{P_{k-1} + \sigma^2} (y_k - \hat{x}_{k-1})
$$

Case 1: $\sigma = 0$ (no measurement noise) $\rightarrow \hat{x}_k = y_k$ Case 2: $\sigma > 0$; $P_0 = 0$ (so all $x_k = 0$) $\to G_k = 0$; $P_k = 0$, and $\hat{x}_k = 0$ for all k

Case 3: $\sigma > 0$; $P_0 > 0 \rightarrow P_k < P_{k-1}$ (decreasing error variance), and since $P_0 > 0$, in the limit $\lim_{k\to\infty} P_k = 0$