
Appearance based methods (classification) 
 

As opposed to model-based methods, appearance based methods 
use no a priori knowledge on the data present in the image. 
Instead, they try through statistical analysis of the available 
dataset (either an image or image characteristics database) to 
extract the different variation modes of the database and provide 
a set of subclasses which represents them best. 
Usually 2 phases will be involved: 
A training phase and a classification phase 
 

• Training: 
o Acquire initial set of hand sign images (training set). 
o Calculate the eigenhands from the training set, keeping only 

the M eigenvectors corresponding to the highest eigenvalues. 
o Calculate representation of each hand signs in hand space. 

 
• Testing: 

o Project input image into hand space. 
o Find most likely candidate by distance computation 

 
 

 
 

(From Jain et al 2000) 
 



PCA 
 
Principal components analysis is a method developed in statistics for 
regression, reduction of dimensionality of data and noise reduction. It has 
been introduced by: 
 

• Pearson for biology (1901) 
• Hotelling for psychometry (1933) 
• Karhunen-Loeve (1947-1963) for infinite-dimensional and 

continuous cases in probability theory. 
 
Reduction of dimensionality: 
Select a minimum set of features such that the probability distribution of 
different classes given the values for those features is as close as possible 
to the original distribution given the values of all features. 
 
Why? 

• The curse of dimensionality (Bellman 1961) 
• Measurement cost 
• Classification accuracy 
• Visualization in 2D or 3D of a dataset help to understand its 

underlying pattern structure 
• pattern extraction (side effect)->reduction of number of attributes 

 
Although a hand image defines a point in the high dimensional image 
space, different hand images share a number of similarities with each 
other. 

• It seems plausible to find a lower dimensional subspace, which can 
represent them best. 

Then? 
• Project the face images into an appropriately chosen subspace and 

perform classification by similarity computation (distance). 
 
Goal? 

• Find the vectors that best account for the distribution of hand 
images within the entire image database space 



PCA (principle) 
 

PCA removes correlations between variables or signals, while at the same 
time finding directions with maximal variance. 

 
Let us suppose we have access to N samples of a vector x with n 
elements. 
Elements of x can be measurements such pixel grey levels, or values 
(image features) of a signal at different time instants. These vectors will 
not be uniformly distributed in the n-dimensional space but more likely 
scattered. 
 
Given N data vectors of dimension n from the dataset, you have to find  
c <=  N  orthogonal vectors that can be best used to represent data. 

• Same thing as saying: you need to find an orthonormal basis which 
maximizes the variance of the projection of the dataset vectors 
along the new coordinate axis. 

• The first axis corresponds to the maximal variance; the second axis 
corresponds to the maximal variance in the direction orthogonal to 
the first axis, etc... 
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Principal axes of a density: e1 and e2. Eigenvalues λ1 and λ2 
provide the variances in the Principal component directions. 

 

Direction of the 
largest eigenvalue 

or variance  



• In the new basis (with ON vectors ei) the dataset vectors (x) can 
be written as a linear combination: 

x = ω1 e1 + ω2 e2 +…+ ωN eN 
• The smallest variances account for little data change in some 

directions. These directions can be dropped without significant 
changes. 
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• The original data set is reduced (projected) from one consisting 
of N data vectors onto c principal components (reduced 
dimensions)  

• Each data vector is a linear combination of the c principal 
component vectors 

x = ω1 e1 + ω2 e2 +…+ ωc ec 
 

• In the new coordinate system, axes are ordered according to 
variance values (i.e. size of the eigenvalue).  

 
How to find the ON basis which maximizes the variance of the projection 
of the dataset vectors along the new coordinate axis? 
 

• Compute the Covariance matrix of the centered dataset 
• Find its eigenvalues and eigenvectors. 

o The unit eigenvectors of the covariance matrix are the 
principal directions of the data. 

o The projections of x to the principal directions are the 
principal components of x. 

• Variance -> eigenvalue. 
• Orthogonal axis ->direction of the eigenvectors 

o Take eigenvectors of unit norm for unicity of solution. 
 
 
 
 



PCA (aka Karhunen-Loeve transform aka Hotelling) 
 

We start with a database of N images Ii represented by their feature vectors xi 

(whatever they might be) of dimension M by 1. 
The feature vector might be a concatenation of the image pixels, curves describing 
the hand contours, moments, Fourier descriptors, Corners or other points of 
interests (Curvature related) 

 
We need to define the average feature vector of the database and the 
corresponding centered feature values: 

 
The covariance matrix C of the database is defined by: 
 

 
ei and λi the eigenvectors and eigenvalues of the covariance matrix C verify: 

The eigenvectors of C are also called the principal component of C. 
The matrix is symmetric, positive definite. 

• its eigenvectors are orthonormal 
• its eigenvalues are all non-negative 

 
PCA applied directly to the covariance matrix of the images leads to extensive 
computation, as the dimension of the covariance matrix is equal to the square of the 
dimension of a feature vector. For a 256x256 image, a feature vector will be of 
dimension 65536x1. The covariance matrix will be of size 65536x65536 and you will 
have to search for 65536 eigenvectors each of size 65536x1. 
 
Turk and Pentland introduced a method to obtain the eigenvalues and 
eigenvectors of C by studying (finding the eigenvalues and eigenvectors) a 
smaller matrix. 
Instead of working directly on C, the eigenvectors and eigenvalues of an NxN matrix 
(N size of your database) can be used to deduce the eigenvectors and eigenvalues of 
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C. Let’s write the conditions leading to e being an eigenvector of C with λλλλ as 
associated eigenvalues: 
as: 
Therefore, if e is an eigenvector of C, e can be expressed as a linear combination of 
the vectors {yi} 

with bi defined as: 

Furthermore: 

 
The vector b (b1, b2,…,bN)T is the eigenvector of the matrix with (i,j) elements  
The associated eigenvalue is λλλλ 
Eigenvectors (e) of matrix C can be computed as linear combination of the previous 
matrix with eigenvectors b: 

Conclusion: we replace the task of finding eigenvectors of matrix M by M by finding 
the eigenvectors of matrix N by N. 
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Summary 
 

1. Take the mean of the feature vectors (xi) of your database: 

 
2. Compute their centered difference 

3. Form the matrix M 

 
4. Find the eigenvectors and eigenvalues of M 

5. Compute eigenvalues λ and eigenvectors ei of the covariance 
matrix C of your database 

 
6. Find the most meaningful eigenvectors.  

• Keep the first k dimensions, which account for a given fraction 
of all the variance. 

• Usually above 70% is sufficient for rough description of the 
dataset modes. 
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7. 2 approaches 
• Find the most significant classes of your database via 

distance computation.  
• Express feature vectors of the database as linear combination 

of eigenvectors 
•  
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�� Classify the images not belonging to the database��
• The distance between the feature vectors of the image and the 

closest point of each class in the training set is determined. The 
image is classified into the class whom minimal distance sample 
point belongs. 

• The distance between the feature vectors of the image and the 
representative feature vector of each class. The Image is similarly 
classified into the class of the representative image with minimal 
distance. 

�

 
  



 
Conclusion 

 
PCA is useful for: 

o Finding new, more informative, uncorrelated features 
o Reducing dimensionality by rejecting features associated to low 

variances 
 
PCA maximises while minimizing the sums of squares of distances from 
original points to projections. 
 

 

 
 

Projection on the axis of the largest eigenvalue 
 
 
 

Drawbacks: 
The largest variance determines which components are used, but does not 
guarantee that this will provide an interesting viewpoint for clustering 
data. 
 

 
 

 
 
 



 
First component will be chosen along the largest variance direction; both 

clusters will strongly overlap, no interesting structure will be visible.   
 
 

• A Projection onto the orthogonal axis to the first PCA component 
has much more discriminating power. 

• Find the basis which maximizes the distance of projected mean 
values while minimizing the within class scatter (variance without 
the normalization constant) 
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