

STEREO CORRESPONDENCE

COMPSCI 773 S1 T Vision Guided Control A/P Georgy Gimel'farb

Computer Stereo: Applications

Medical diagnostics, architecture, autonomous navigation, cartography, biometrics, material science, etc...

Triangulation from Projections

- Point P: projecting into the pair of corresponding points \mathbf{p}_l and \mathbf{p}_r
- Ideally, P at the **intersection** of the two optical rays: respectively, from O_I through \mathbf{p}_I and from O_r through \mathbf{p}_r
 - Due to approximate cameras' parameters and imprecise image locations:
 the actual two rays may not actually intersect in space
 - Estimated intersection: the point on minimum distance from both rays

Three Basic Cases

Depending on the amount of a priori cameras' knowledge:

- 1. Both intrinsic and extrinsic parameters: the unique reconstruction of a 3-D scene by *triangulation*
- 2. Only the intrinsic parameters: a 3-D scene is still reconstructed and also the extrinsic parameters are estimated, but up to an unknown scaling factor
- Only pixel correspondences: a 3-D scene is still reconstructed, but up to an unknown, global projective transformation

Matching Fundamentals

Computational stereo: 3-D coordinates of visible points from 2-D coordinates of the corresponding image pixels

Difference of these pixel coordinates: disparity (or parallax)

Matching Fundamentals

- Generally, horizontal (x-) and vertical (y-) disparities
 - x-disparity: difference $d_{x,y} = x_l x_r$ between the corresponding x-coordinates
 - y-disparity: difference $\delta_{x,y} = y_l y_r$ between the corresponding y-coordinates
 - Usually, a horizontal stereo baseline and small y-disparities
 - Canonical stereo geometry (an epipolar pair): no y-disparities

Stereo image matching: to find disparities for all visible 3D points in a stereo pair

Disparity Map

Continuous vector-valued function $\mathbf{d}(x,y) = [d_{x,y}, \delta_{x,y}]$

 Mapping the coordinates of binocularly visible points in one image to the corresponding coordinates in the other image:

$$(x,y) \Leftrightarrow (x-d_{x,y}, y-\delta_{x,y}) \Leftrightarrow g_{l:x,y} \Leftrightarrow g_{r:x-d_{x,y},y-\delta_{x,y}}$$

 Mapping is undefined for partially occluded points having no stereo correspondence

Search region: for a position (x,y) in the left image \Leftrightarrow a set of candidats to be explored in the right image:

$$\{(x',y'): x-d_{\max} \le x' \le x-d_{\min}; y-\delta_{\max} \le y' \le y-\delta_{\min}\}$$

"Corridor": Disparity Map

Left image of a stereo pair

Right image of a stereo pair

Grey-coded disparity map

Cyclopean image of the 3-D scene

"Artificial Rock": Disparity Map

Left image of a stereo pair

Grey-coded disparity map

Right image of a stereo pair

Cyclopean image of the 3-D scene

"Alex": Disparity Map

Upper image of a vertical stereo pair

Grey-coded disparity map

Bottom image of a vertical stereo pair

Cyclopean image of the 3-D face

III-posed Stereo Problem

Inverse optical problem - no unique solution!

- Disparity map: a set of epipolar profiles
 - Points of each profile and corresponding points along the conjugate scan-lines in images have the same y-coordinates
 - Only the signals along these scan-lines have to be matched

- Symmetric coordinates: $[X,y,Z]^T \leftrightarrow [x_L,y], [x_R,y]$
 - Disparity: $d = x_L x_R = bf/Z$
- Cyclopean image / disparity map: $(X,y,Z) \rightarrow (x,y,d)$

Symmetric (x,d)-coordinates:

$$\begin{pmatrix} x = (x_{L} + x_{R})/2 \\ d = x_{L} - x_{R} \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} x_{L} = x + d/2 \\ x_{R} = x - d/2 \end{pmatrix}$$

 $x_{\rm L}, x_{\rm R} = 0, 1, 2, \dots$

$$x = 0, \frac{1}{2}, 1, 1\frac{1}{2}, 2, \dots$$

$$d = \dots, -2, -1, 0, 1, 2, \dots$$

- B binocular visibility
- ML monocular visibility (left image only)
- MR monocular visibility (right image only)

Integer cyclopean coordinates *x*

- even disparities d

Half-int cyclopean coordinates *x*

- odd disparities d

Basic restriction: a continuous single surface in cyclopean space

Equivalent Surface Profiles

Sources of *Ill-Posedness*

Multiple surfaces, partial occlusions, uniform texture...

Actual disjoint and equivalent continuous surface profiles

Sources of *Ill-Posedness*

Most of 3D scenes do not conform to the single surface assumption and thus to the ordering constraint

Visibility of 3-D Points

Multiple disjoint and continuous 3-D profiles:

binocularly visible points;

+ : invisible (occluded) points; o partially occluded points; o transparent points

Real Vs. Equivalent Profiles

Distribution of signal differences

-60 -45 -30 -15 0

Signal-to-signal matching along the same scan -line 173; stereo pair "Tsukuba"

15

Grey-coded signal differences

3-D Reconstruction

- Because of ill-posedness, it is impossible to reconstruct precisely the original 3D scene from a stereo pair
 - Goal of stereo matching is therefore more limited and more practical: to bring the reconstructed surfaces close enough to those perceived visually or with the photogrammetric tools
- Due to a multiplicity of visually observed scenes only very general prior knowledge to constrain optical 3-D surfaces under reconstruction
 - E.g. expected smoothness, curvature, discontinuities, etc

General Matching Constraints

Reflecting intrinsic properties of stereo viewing and a 3-D scene **Epipolar constraint**: 1-D search along the conjugate scan-lines

- Rectified stereo pairs reduced to the canonical stereo geometry
- Reduced search region; excluded false matches across the scan-lines

Uniqueness constraint: every pixel in one stereo image has at most one corresponding pixel in the other image

- Every visible 3-D point is observed either binocularly or only monocularly
- Monocular observation: partial occlusion (no stereo correspondence)

Disparity range $[d_{\min}, d_{\max}]$ is typically known for a 3-D scene

- Reduced search region; excluded false matches outside the range

Continuity constraint: smooth surfaces except for object boundary

General Matching Constraints

Ordering constraint: the same order of corresponding points along the conjugate scan-lines - but only for a *continuous single* profile!

Simplifying Constraints

Equal corresponding signals

- Lambertian (direction-independent) reflection of 3-D surfaces
- Simple matching scores like $|g_{L:x,y}-g_{R:x,y}|$ or $(g_{L:x,y}-g_{R:x,y})^2$

Frontal parallel surfaces

 Area-based correlation matching: constant disparity and no occlusions over the matching windows

Similarity of features

 Feature-based matching: similar and mutually consistent groups of corresponding features in both images

Stereo Correspondence

- Similarity between (dissimilarity of) stereo images
 - Under their relative photometric and geometric distortions
 - Different projective views, camera noise, occlusions, ...

Photometric distortions

- Non-uniform reflection of observed 3-D surface points in different directions
- Non-uniform and noisy transfer factors over a field-of-view (FOV) of every stereo camera
 - Spatially variant contrast and offset deviations between corresponding signals in stereo images

Stereo Correspondence

- Geometric distortions due to projection of a 3-D scene onto the two image planes
 - Spatially variant disparities of the corresponding points
 - Corresponding regions in stereo images may differ in positions, scales, and orientations
 - Partial occlusions (monocular visibility) of some 3-D points
 - Such regions have no stereo correspondence in principle
 - A single continuous visible surface: the images preserve the natural x- and y-order of binocularly visible points (BVP)

Stereo Correspondence

- Stereo matching techniques differ in:
 - Which image similarities (dissimilarities) are measured
 - Which relative image distortions are taken into account
 - Which constraints / regularising heuristics are involved
 - How a stereo pair is matched as a whole
- Image signals: grey values, colours (RGB, HSV, etc)
- Feature-based vs. intensity-based stereo matching
 - Dense and sparse disparity maps

Feature-based Matching

- Specific area, linear, and point features individually found in each image of a stereo pair
 - Edges, corners, T- junctions, isolated local shapes, etc
 - Only features are tested for similarity
 - Feature matching usually cannot produce dense disparity maps

Intensity-based Matching

- Similarity (or dissimilarity) between the images in terms of the initial signals for all binocularly visible 3-D points
 - Signals: grey levels, colours, or multi-band signatures
 - Math models to relate optical signals from the observed 3-D points to the image signals in the corresponding pixels
 - Similarity (dissimilarity $D(\mathbf{d} \mid \mathbf{g}_{L}, \mathbf{g}_{R})$) between the corresponding image pixels or regions is derived from the model
 - The similarity score has to be invariant to relative geometric and photometric image distortions the model accounts for

Local and Global Optimisation

- 3-D reconstruction: search for the max similarity (or min dissimilarity) between the corresponding regions / pixels
 - Similarity measure accounts for admissible image distortions and includes regularising constraints:
 - E.g. to deal with partial occlusions or multiple equivalent optima
 - For a single continuous surface: visibility and ordering constraints
- Scenarios of reconstructing a 3-D scene: $\mathbf{d}^* = \max_{\mathbf{d}} \{D(\mathbf{d} \mid \mathbf{g}_L, \mathbf{g}_R)\}$
 - Exhausting variants of visible surfaces by global optimisation
 - Independent selection of each 3-D point by local optimisation
 - Successive search for each next small surface patch by local optimisation in order to add it to the already found surface

Local Optimisation

- Pros: simple computations; easily takes account of both
 x- and y-disparities of the corresponding pixels
- Cons for independent selection of 3-D points: the found surfaces may violate visibility and continuity constraints
- Cons for guiding next search by the current surface: due to accumulation of local errors, the search regions after a few steps may become completely wrong
- **Cons** in both cases: it needs intensive on- or off-line editing of the reconstructed 3-D scene to fix errors

Global Optimisation

- Pros: less sensitive to local errors due to constraints on the conjugate scan-lines or the entire stereo images
- **Cons**: generally, it is an **NP-hard** problem (due to 2-D constraints on disparities in the neighbouring points)
 - It is feasible only in particular cases when direct exhaustion of all the variants (with the exponential complexity) is avoided
 - Known approximate solutions are still too complex and thus too slow for processing large-size images of practical interest
 - Profile-by-profile reconstruction by 1-D dynamic programming is fast but takes no account of constraints across the profiles

Global Optimisation

- Two popular tools for approximate global optimisation:
 - Graph min-cut iterative algorithms
 - Exact solution for a minimum cut / maximum flow problem
 - Approximation of stereo matching with a sequence of graph min-cuts
 - Disparity map: the constrained dissimilarity between two stereo images within a fixed factor from the global minimum
 - Loopy belief-propagation algorithms
 - Computing marginal posterior probabilities of constrained disparities for each surface point
 - Convergence on loop-less graphs (trees)
 - Under specific conditions, convergence on loopy graphs, too

