

Min Cut / Max Flow Energy Minimisation

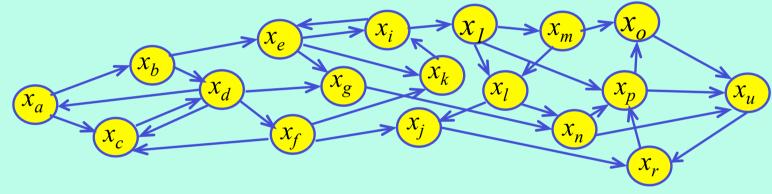
COMPSCI 773 S1 T VISION GUIDED CONTROL A/P Georgy Gimel'farb

Dissimilarity Minimisation

- 3-D surface by minimising energy (dissimilarity) of stereo images:
 - Combinatorial optimisation on graphs specifying relationships between neighbouring pairs of disparities and image signals
 - Generally, an NP-hard problem (the exponential complexity)
 - Energy (dissimilarity) accumulates weights of nodes and edges
 - Approximate iterative **polynomial-time** solution
 - Maximum flow / minimum cut algorithms applied to special graphs
 - Solution is provably within a fixed factor of the global minimum
 - General **maximum flow** problem for a network, or a directed graph (digraph) **G** with two special nodes: a source, *s*, and a sink, *t*

Basic Notation

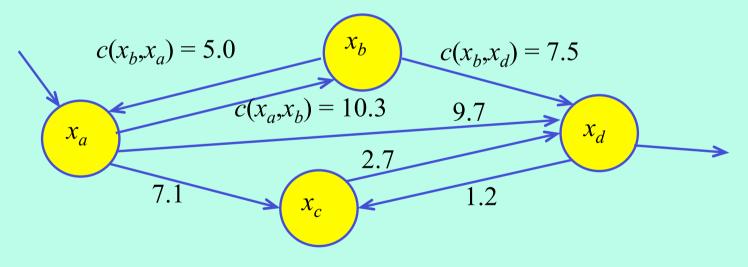
• **G**=[**N**,**E**] - a digraph (network) with sets of nodes **N** and edges **E**:



- $N = \{x_a, x_b, x_c, \dots\}; E = \{(x_a, x_b), (x_a, x_c), \dots\} \subseteq N^2$
- **Chain**: a sequence x_1, \ldots, x_n such that $(x_i, x_{i+1}) \in \mathbf{E}$
- **Path**: a sequence x_1, \ldots, x_n such that either $(x_i, x_{i+1}) \in \mathbf{E}$ or $(x_{i+1}, x_i) \in \mathbf{E}$
- Set of the subsequent nodes "after x": $A(x) = \{y \in \mathbb{N} \mid (x, y) \in \mathbb{E}\}$
- Set of the preceding nodes "before x": $B(x) = \{y \in \mathbb{N} \mid (y, x) \in \mathbb{E}\}$

Flows in Networks

• $c(x,y) \ge 0$ – a non-negative capacity of $(x,y) \in \mathbf{E}$ $c: \mathbf{E} \rightarrow \mathbf{R}^{\ge 0} = [0,\infty)$ – a capacity function on \mathbf{E}

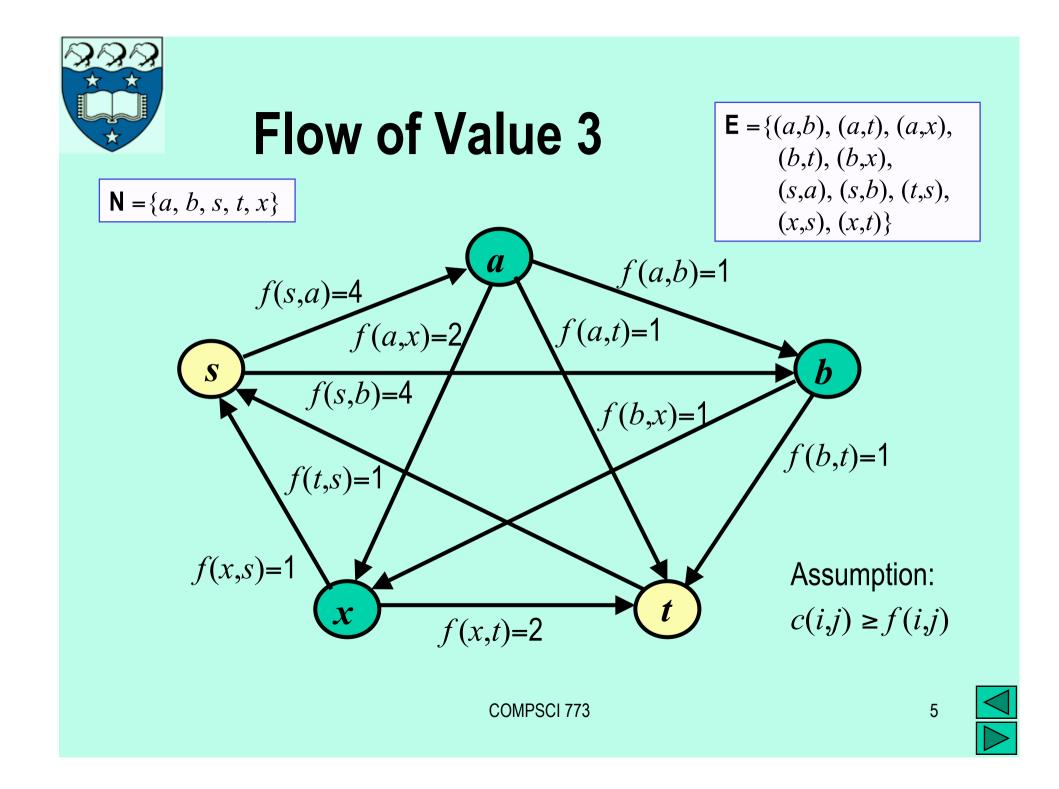


- *s*, *t* the two distinguished nodes (*source*, *sink*)
 - Edges then can be considered as "water pipes"...

Flows in Networks

Static flow of value *v* from *s* to *t* in [**N**; **E**] is a function $f: \mathbf{E} \rightarrow \mathbf{R}^{\geq 0}$ satisfying linear conditions:

- The flow through every edge does not exceed the edge capacity $\begin{aligned} &\forall_{(x,y)\in\mathsf{E}} \quad f(x,y) \leq c(x,y) \\ &\sum_{y\in A(x)} f(x,y) - \sum_{y\in B(x)} f(y,x) = \begin{cases} v & x = s \\ 0 & x \neq s, t \\ -v & x = t \end{cases}
 \end{aligned}$
- Every node except *s* and *t* has equal inflow and outflow



Static Max Flow Problem

• Maximise the flow v subject to the flow constraints:

$$\begin{aligned} \max v : \forall_{(x,y) \in \mathsf{E}} \quad f(x,y) \le c(x,y) \\ \sum_{y \in A(x)} f(x,y) - \sum_{y \in B(x)} f(y,x) = \begin{cases} v & x = s \\ 0 & x \neq s, t; \quad x \in \mathsf{N} \\ -v & x = t \end{cases} \end{aligned}$$

- A cut C of the network [N; E] is a set of edges such that their removal separates the source s from the sink t
 - The cut breaks every chain of nodes from the source to the sink
- The capacity of the cut C is the total capacity of its edges, i.e. the sum of their capacities

Cuts and Capacities

<u>Example</u>: the set of edges $\mathbf{C} = \{(s,y), (x,y), (x,t)\}$ is a cut separating s and t

$$c = 1, f = 1$$

 s
 $1,1$
 $3,2$
 v
 $1,1$
 $1,0$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,1$
 $1,$

Capacity of the cut $c(\mathbf{C}) =$ 2 c(s,y) + c(x,y) + c(x,t) =3 + 1 + 3 = 7

Flow through the cut $f(\mathbf{C}) =$ f(s,y) + f(x,y) + f(x,t) =2 + 0 + 2 = 4

Flow vs. Capacity of the Cut

Lemma 1 [Ford,Fulkerson;1956]:

Let a flow f from the source s to the sink t in a network [N;E] have value v

Let **C** be a cut that separates s from t

Then the difference between the forward flow $f_{s-t}(\mathbf{C})$ from *s* to *t* through **C** and the reverse flow $f_{t-s}(\mathbf{C})$ from *t* to *s* through **C** is equal to *v* and is not greater than the capacity of the cut:

$$v = f_{s-t}(\mathbf{C}) - f_{t-s}(\mathbf{C}) \le c(\mathbf{C})$$

Meaning of Lemma 1

The equality in Lemma 1:

the value *v* of a flow from the source *s* to the sink *t* is equal to the **net flow** across any cut separating *s* and *t*

The inequality in Lemma 1:

the net flow across any cut separating *s* and *t* does not exceed the capacity of the cut

Thus, the net flow from *s* to *t* is bounded by the capacities of the cuts separating *s* and *t*

Maximal Flow / Minimum Cut

Max-flow min-cut theorem [Ford,Fulkerson;1956]: For any network the maximum flow value from *s* to *t* is equal to the minimum cut capacity of all cuts separating *s* and *t*

Corollary 1: A flow is **maximum** if and only if (**iff**) there is no *flow augmenting path* with respect to *f*

- A path from *s* to *t* is a *flow augmenting path* w.r.t. a flow *f* if f < c on forward edges of the path and f > 0 on reverse edges of the path
- Fundamental importance of the corollary: to increase the value of a flow, improvements are of a very restricted kind!

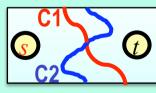
Maximal Flow / Minimum Cut

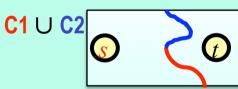
- An edge (x,y) is saturated w.r.t. a flow f if f(x,y) = c(x,y)and is flowless w.r.t. f if f(x,y) = 0
- **Corollary 2**: A cut **C** is **minimum** iff every maximum flow *f* saturates all forward edges of the cut whereas all reverse edges of the cut are flowless w.r.t. *f*
- *Meaning of Corollary* 2: there are no flow augmenting paths w.r.t. the maximum flow
- The case of many sources and sinks with unrestricted flows is equivalent to a single source, single sink case

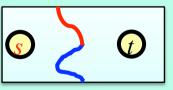
Maximal Flow / Minimum Cut

 Union (U) of two cuts: the set of edges between the union of all the source-side nodes from each cut and all the other nodes in N

Intersection (∩) of two cuts:
 the set of edges between the intersection of the source-side nodes in these cuts and all the other nodes in N







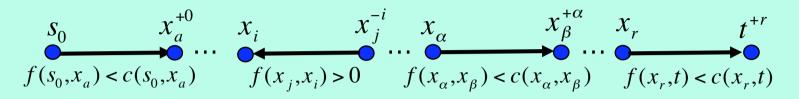
Corollary 3: If C1 and C2 are minimum cuts, then the union C1 ∪ C2 and intersection C1 ∩ C2 are also minimum cuts

- Proof of the **max-flow / min-cut theorem** provides, under mild restrictions on the capacity function, a simple efficient algorithm for constructing a maximal flow and minimal cut in a network
- **Initialization**: the zero flow
- Sequence of "labellings" (*Routine* A), each of which
 - either results in a flow of higher value (Routine B) or
 - terminates with the conclusion that the present flow is maximal (to ensure termination: integer capacities!)

Informal Algorithm Description

- Main idea of labelling (routine A): use a system of labels to find paths between the source and the sink with unsaturated edges
 - Labelling begins from the source (getting the label 0)
 - Let a node x_i be already labelled
 - 1. A subsequent node x_j is not labelled if the edge (x_i, x_j) is saturated; otherwise $(f(x_i, x_j) < c(x_i, x_j))$ it is labelled with +i, that is, x_j^{+i}
 - 2. A preceding node x_j is not labelled if the flow $f(x_j, x_i) = 0$; otherwise ($f(x_j, x_i) > 0$) it is labelled with -i, that is, x_j^{-i}
 - Therefore, the network flow can be increased by increasing flow through edges ending with (+)-nodes and decreasing it through edges ending in (-)-nodes

Informal Algorithm Description



- If the sink is labelled, then there exists a flow augmenting path between the source and the sink such that all its nodes are labelled with the indices of their preceding nodes
 - Because such a path contains only unsaturated edges, all the flows via its edges can be changed by a value

$$h = \min_{\substack{(x_q, x_u^{+q}) \in \text{path} \\ (x_k^{-m}, x_m) \in \text{path}}} \left\{ c(x_q, x_u^{+q}) - f(x_q, x_u^{+q}), f(x_k^{-m}, x_m) \right\} > 0$$

The flow via an edge is increased by *h* if the edge is oriented from *s* to *t* (from the source to the sink) and decreased by *h* otherwise

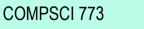
- Given an integral flow *f*, labels are assigned to nodes of the network
 - Nodes can be unlabelled (UN), labelled unscanned (LUN), and labelled scanned (LSN)
 - A label has one of the forms (*x*⁺, ε) or (*x*[−], ε), where *x* ∈ **N** and ε is a positive integer or infinity (∞)

Routine A: Labelling

- Initially all nodes are unlabelled (**UN**) :

The source node is **LUN** $(-, \varepsilon(s) = \infty)$

Other nodes are **UN**



Routine A: Labelling (cont.)

- For every LUN x having the label $(z^{\pm}, \mathcal{E}(x))$:

(1) Convert all UN y "after x" (i.e. in A(x)) such that

f(x,y) < c(x,y) into **LUN** with the labels

$$x^+, \varepsilon(y) = \min[\varepsilon(x), c(x,y) - f(x,y)]$$
), and

(2) Convert all **UN** y "before x" (i.e. in B(x)) such that

f(y,x) > 0 into **LUN** with the labels

 $(x^{-}, \varepsilon(y) = \min[\varepsilon(x), f(y, x)])$

(3) Such x is now **LSN**

- If the sink *t* is **LUN**, go to **Routine B**; otherwise (*t* is **UN**) - stop

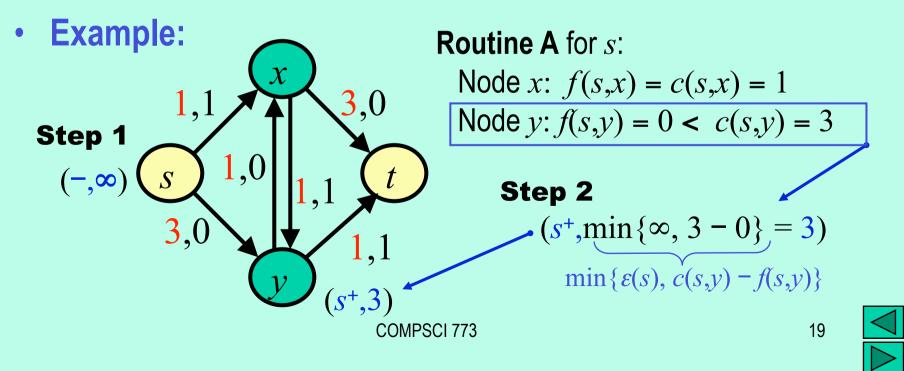
Routine B: Flow change (the sink has been labelled $(y^{\pm}, \varepsilon(t))$):

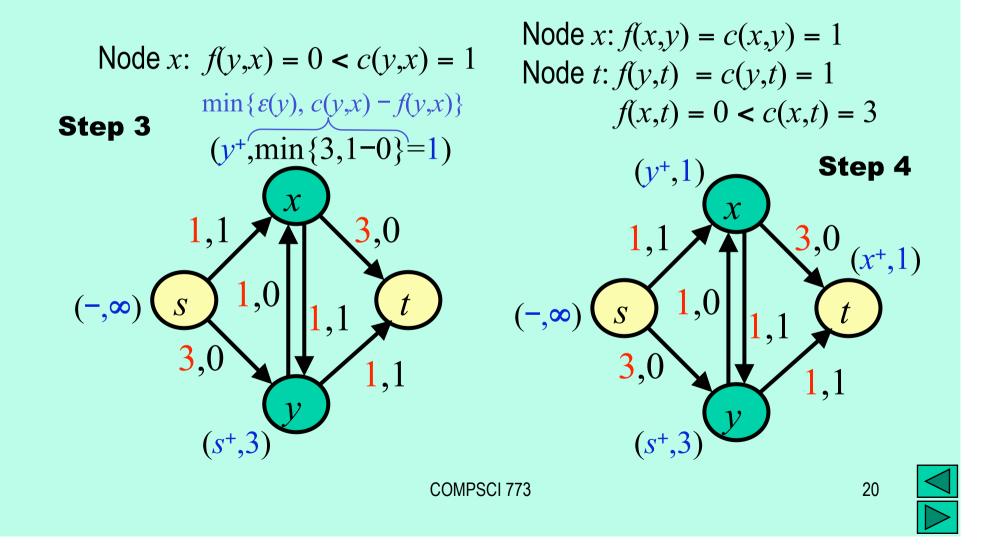
- If t is labelled $(y^+, \varepsilon(t))$, replace f(y,t) with $f(y,t) + \varepsilon(t)$
- If t is labelled $(y^-, \varepsilon(t))$, replace f(t, y) with $f(t, y) \varepsilon(t)$
- In either case,

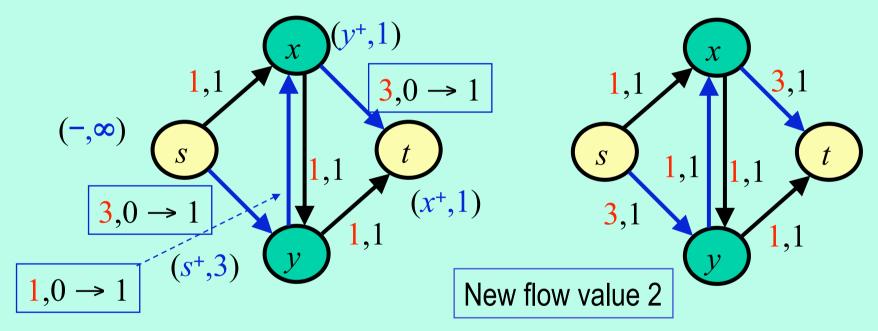
if node y is labelled $(x^+, \varepsilon(t))$, replace f(x, y) with $f(x, y) + \varepsilon(t)$ if node y is labelled $(x^-, \varepsilon(y))$, replace f(y, x) with $f(y, x) - \varepsilon(t)$ and go on to node x

 Stop the flow change when the source s is reached, discard the old labels, and go back to **Routine A**

Labelling searches for a flow augmenting path from *s* to *t* : If **Routine A** ends and the sink is not labelled, the flow is maximum and the set of edges from **UN** to **L*****N** nodes is a minimum cut

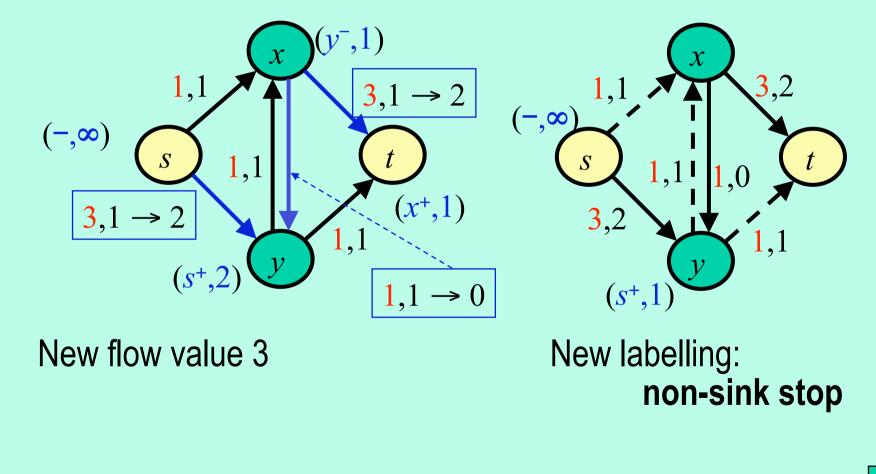






A flow augmenting path is located by backtracking from the sink *t* according to directions given in labels along which a flow change of $\varepsilon(t) = 1$ can be made

COMPSCI 773



Polynomial-Time Max-Flow

Maximum flow in the *n*-node, *m*-edge network (graph):

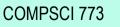
- Ford–Fulkerson (finding augmenting paths; 1956): $O(nm^2)$
- Dinic (shortest augmenting paths in 1 step; 1970): $O(n^2m)$
 - Graphs: dense $O(n^3)$; sparse $O(nm \log n)$
- Goldberg–Tarjan (pushing a pre-flow; 1985): $O(nm\log(n^2/m))$
 - Karzanov's pre-flow: the flow in and out of nodes may not be equal (the difference at node *j* is called the excess at *j*)
 - Aggressive-passive mode: push as much as possible into the graph, then trim the excess to 0; no flow until the end

Relabelling eventually makes 0 the excess at each node

- Excess e(x) at x is $e(x) = \sum_{y \in B(x)} f(y,x) \sum_{y \in A(x)} f(x,y)$
 - The node x is **active** if e(x) > 0
 - The source and sink are never active
- **Residual capacity** of an edge (x,y): r(x,y) = c(x,y) - f(x,y) + f(y,x)
 - **Residual network** (graph): $\mathbf{RG} = \{(x,y) : r(x,y) > 0\}$
- **Distance function** $d: \mathbb{N} \rightarrow \mathbb{R}$ for the nodes:
 - (1) d(t) = 0;
 - (2) if $(x,y) \in \mathbf{E}$ and c(x,y) > 0 then $d(x) \le d(y) + 1$

Initialisation:

- $d(s) = |\mathbf{N}|$ (the number of nodes in a network)
- d(t) = 0
- d(x) = 1 for all $x \neq s, t$
- -f(s,x) = c(s,x) for every edge $(s,x) \in \mathbf{E}$
- **Processing** while an active node (e(x) > 0) exists:
 - Select an active node x and
 - Try to push more pre-flow towards the sink

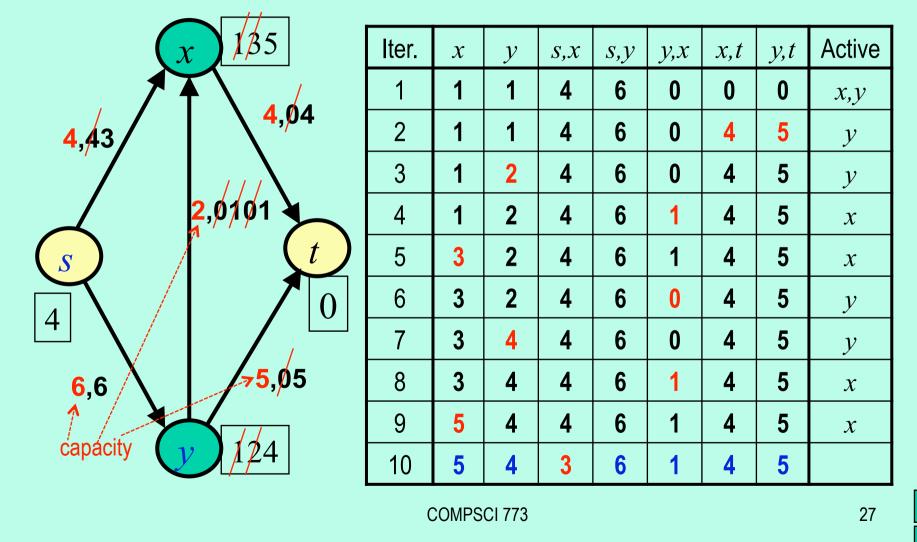


- **Processing** (cont.):
 - If $(x,y) \in \mathbf{E}$, d(x) = d(y) + 1, r(x,y) > 0 or $(y,x) \in \mathbf{E}$, d(x) = d(y) + 1, r(x,y) > 1, then

push $\min\{e(x), r(x,y)\}$ from x to y and change f accordingly (pushing as much as the excess at the node and the residual capacity of or from the edge (x,y) allows)

If nothing can be pushed from *x*, relabel *x* by replacing d(x) with $\min\{ d(y) + 1 : (x,y) \in A(x) \text{ and } r(x,y) > 0 \}$

• Once processing is finished, the pre-flow is a **max flow**



D.M.Greig, B.T.Porteous, A.H.Seheult: Exact Maximum A Posteriori Estimation for Binary Images. *Journal of the Royal Statistical Society, Ser. B*, Vol.51 (2), pp.271-279, 1989

Energy Minimization via Graph Cuts

• [D. M. Greig e.a., 1989]: Denoising binary images Noisy signals $\mathbf{y} = (y_i: i = 1, ..., n)$ are conditionally independent, given a noiseless image $\mathbf{x} = (x_i: i = 1, ..., n)$: $P(\mathbf{y} \mid \mathbf{x}) = \prod_{i=1}^{n} p(y_i \mid x_i) \equiv \prod_{i=1}^{n} p(y_i \mid 0)^{1-x_i} p(y_i \mid 1)^{x_i}$ $= \prod_{i=1}^{n} p(y \mid 0) \prod_{i=1}^{n} \left(\frac{p(y_i \mid 1)}{p(y_i \mid 0)} \right)^{x_i}$

Prior image model: a 2nd-order Markov random field (MRF):

$$P(\mathbf{x}) \propto \exp\left(\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \left[x_i x_j + (1 - x_i)(1 - x_j) \right] \right)$$

where $\beta_{ii} = 0$; $\beta_{ij} = \beta_{ji} \ge 0$ (neighbours if the strict inequality): i.e. the model of more probable identical neighbours ($x_i = x_j$)

Negative Likelihood as Energy

• Log-likelihood (apart from an additive constant): $L(\mathbf{x} | \mathbf{y}) \propto \ln P(\mathbf{y} | \mathbf{x}) P(\mathbf{x})$

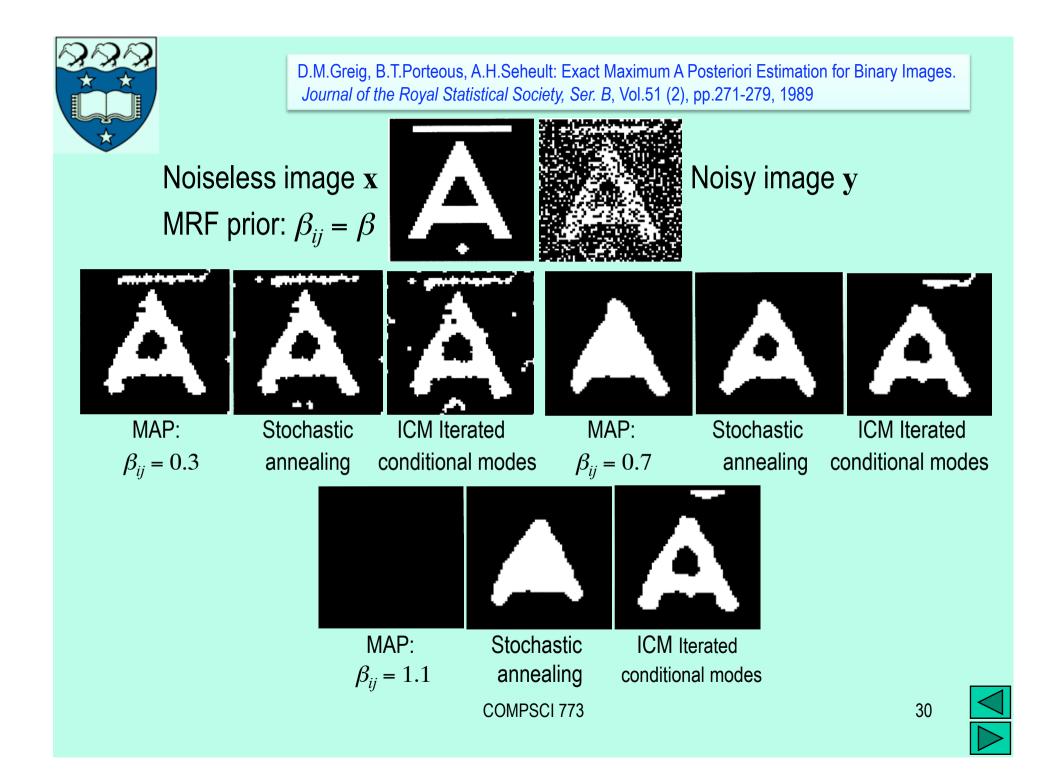
$$= \sum_{i=1}^{n} \lambda_{i} x_{i} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \Big[x_{i} x_{j} + (1 - x_{i})(1 - x_{j}) \Big]$$

where $\lambda_{i} = \log \{ p(y_{i}|1) \} / p(y_{i}|0) \}$

• Bayesian *maximum a priori* (MAP) image estimate:

 $\mathbf{x}^* = \arg \max_{\mathbf{x}} L(\mathbf{x}|\mathbf{y}) = \arg \min_{\mathbf{x}} [-L(\mathbf{x}|\mathbf{y})]$

 Pixel-wise simulated annealing, ICM do not approach the MAP even after hundreds or thousands of iterations...



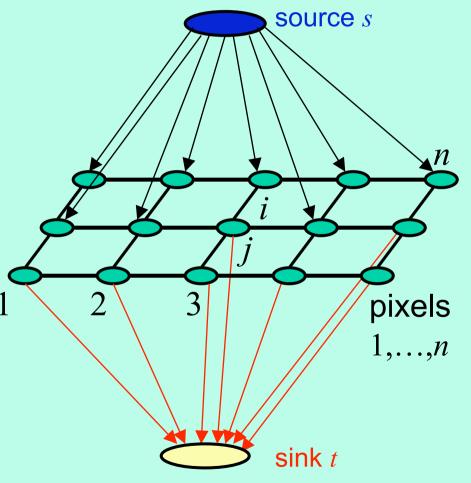
Network Representation

T-links (terminal links):

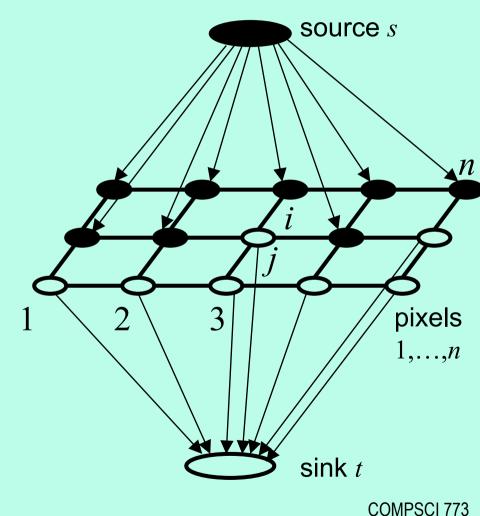
- Directed edge (s,i) with the capacity $c_{si} = \lambda_i$ if $\lambda_i > 0$
- Directed edge (i,t) with the capacity $c_{it} = -\lambda_i$ if $\lambda_i \le 0$

N-links (neighbouring links):

• Undirected edge (i,j)between two internal nodes – neighbours *i* and *j* with the capacity $c_{ij} = \beta_{ij} > 0$



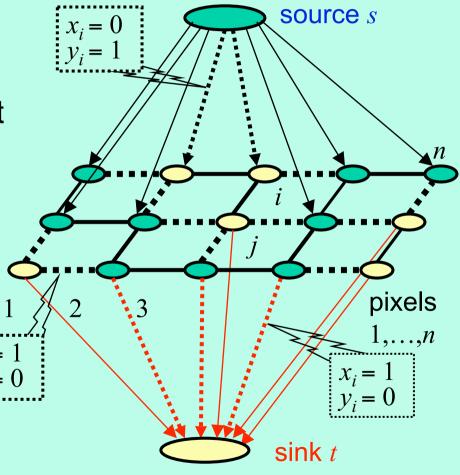
Network Representation



 $\lambda_{i} = \log \{p(y_{i}|1\}/p(y_{i}|0)\}:$ $\lambda_{i} > 0 \text{ for } y_{i} = 1 \quad \bullet$ and $\lambda_{i} < 0 \text{ for } y_{i} = 0 \quad \bullet$ Example: $p(y_{i}|x_{i}) = \begin{cases} 0.8 \quad y_{i} = x_{i} \\ 0.2 \quad y_{i} \neq x_{i} \end{cases}$ $\lambda_{i} = \begin{cases} \log_{2} 4 = 2 \quad y_{i} = 1 \\ -\log_{2} 4 = -2 \quad y_{i} = 0 \end{cases}$

Energy Minimisation via Graph Cut

• **B** = {*s*} \cup {*i*: $x_i = 1$ } and • W = { $i: x_i = 0$ } U {t} – a 2-set partition of the nodes for any binary image x **Cut** - a set of edges (i,j) such that $i \in \mathbf{B}$ and $j \in \mathbf{W}$ **Capacity** of the cut: $x_i = 1$ $x_j = 0$ $C(\mathbf{x}) = \sum c_{ij}$ $(i,j) \in \mathbf{E}$: $i \in \mathbf{B}; j \in \mathbf{W}$



Energy Minimisation via Graph Cut

- Capacity of the cut: $C(\mathbf{x}) = \sum_{i=1}^{n} x_{i} \max\{0, -\lambda_{i}\} + \sum_{i=1}^{n} (1 - x_{i}) \max\{0, \lambda_{i}\}$ $x_{i} = 1$ $y_{i} = 0$ $+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} (x_{i} - x_{j})^{2}$ $x_{i} = 1$ $x_{i} = 0$ $x_{i} = 1$ $x_{i} = 0$
 - Differs from $[-L(\mathbf{x}|\mathbf{y})]$ by a term that is independent of \mathbf{x}
- Maximizing this likelihood is equivalent to minimizing the capacity of the cut, i.e. to finding the minimum cut, or the maximum flow through the network

Energy Minimisation via Graph Cut

- [Greig e. a., 1989] Accelerated Ford-Fulkerson algorithm:
 - Partitioning the image into $2^K \times 2^K$ connected sub-images
 - Calculate the MAP estimate for each sub-image separately
 - Amalgamate the sub-images to form a set of $2^{K-1} \times 2^{K-1}$ larger sub-images
 - Form the MAP estimate for each of them
 - Continue until the MAP estimate of the complete image
- Simulated annealing: does not necessarily produce a good approximation of an MAP estimate and becomes bogged down by local maxima resulting in under-smooth solutions

Energies Minimised via Graph Cuts

Theorem [Friedman, Drineas, 2005; generally, it is a folklore of the combinatorial optimisation: Papadimitriou, Steiglitz, 1986]:

Let
$$E(x_1,...,x_n) = \sum_{i,j} \beta_{ij} x_i x_j + L$$

where $x_i \in \{0,1\}$ and L is linear in x_i plus constants
(i.e. $L = \sum_i \lambda_i x_i + c$)
Then E can be minimised via graph cut techniques if and
only if $\beta_{ij} \le 0$ for all $i, j \in \{1, 2, ..., n\}$

Energies Minimised via Graph Cuts

Proof of "if" part ("only if": see [Papadimitriou, Steiglitz, 1986]):

- Energy is rewritten as $E = \sum_{i,j=1,...,n} \alpha_{ij} x_i (1 x_j) + \Lambda$ where $\alpha_{ij} = -\beta_{ij}$ and the linear term Λ is altered
- Minimal *E* over the binary $x_i \Rightarrow$ a min cut in a complete graph with *n* nodes and edge weights $w_{ij} = \alpha_{ij}$
 - The cut separates the nodes with $x_i = 0$ from those with $x_j = 1$ (because only $x_i = 1$ and $x_j = 0$ adds α_{ij} to the energy)

Polynomial-time min cut if and only if $w_{ij} \ge 0 \Rightarrow \beta_{ij} \le 0$

- For the altered linear term $\Lambda = \sum_i \gamma_i x_i + \sigma$
 - An edge (s,i) with the weight $w_{si} = \gamma_i$ if $\gamma_i \ge 0$ and an edge (i,t) with $w_{it} = |\gamma_i|$ if $\gamma_i < 0$; therefore, **all weights are non-negative**

Energies Minimised via Graph Cuts

Energy terms depending on signals and pairs of signals (class F²): $E(x_{1},...,x_{n}) = \sum_{i} E_{i}(x_{i}) + \sum_{i,j} E_{ij}(x_{i}, x_{j}); x_{i} \in \{0,1\}$ $E_{ij}(x_{i},x_{j}) \equiv E_{ij}^{00}(1-x_{i})(1-x_{j}) + E_{ij}^{01}(1-x_{i})x_{j}$ $+E_{ij}^{10}x_{i}(1-x_{j}) + E_{ij}^{11}x_{i}x_{j}$ $E(x_{1},...,x_{n}) = \sum_{i,j} \left(E_{ij}^{00} + E_{ij}^{11} - E_{ij}^{01} - E_{ij}^{10}\right)x_{i}x_{j} + L$

Such energy function can be minimised via graph cuts if and only if:

$$\underbrace{E_{ij}^{00} + E_{ij}^{11} - E_{ij}^{01} - E_{ij}^{10}}_{\text{regularity condition}} \leq 0 \qquad \forall i, j$$

COMPSCI 773

38

Large Moves via Min-Cut/Max-Flow

[Boykov,Veksler,Zabih,2001] Approximate energy minimisation by replacing pixel-wise optimising moves with large moves

- Convergence to a solution being provably within a known factor of the global energy minimum
- Energy function minimised w.r.t. a labelling $\mathbf{x} = (x_1, \dots, x_n)$:

$$E(x_1,...,x_n) = \sum_{i=1}^n V_i(x_i) + \sum_{(i,j)\in\mathbf{N}} V_{ij}(x_i,x_j); \ x_i \in \mathbf{L}; \ i = 1,...,n$$

where $L = \{1, ..., L\}$ - an arbitrary finite set of labels $N \subset \{1, ..., n\}^2$ - a set of neighbouring (interacting) pixel pairs V_i : $L \rightarrow R$ - a pixel-wise potential function (energy of labels) V_{ii} : $L^2 \rightarrow R$ - a pair-wise potential function (energy of label pairs)

Conditions and Optimal Moves

- Arbitrary pixel-wise energies V_i
- Semimetric or metric pair-wise energies V_{ii}
 - Semimetric: $\forall_{\alpha,\beta\in L} V_{ij}(\alpha,\alpha) = 0$; $V_{ij}(\alpha,\beta) = V_{ij}(\beta,\alpha) \ge 0$
 - Metric: also the triangle inequality $V_{ij}(\alpha,\beta) \le V_{ij}(\alpha,\gamma) + V_{ij}(\gamma,\beta)$
- Each labelling **x** partitions the pixel set $R = \{1, ..., n\}$ into L subsets $R_{\lambda} = (i \mid i \in R; x_i = \lambda \in L\}$
 - Conditionally optimal large moves change each partition $P = \{R_{\lambda}: \lambda \in L\}$ to approach a certain vicinity of the global minimum of the partition energy
 - $\alpha \beta$ -swap (with the semimetric V_{ij})
 - α -expansion (with the metric V_{ij})

α,β -swap and α -expansion

- α,β swap for an arbitrary pair of labels $\alpha, \beta \in L$ is a move from a partition P for a current labelling \mathbf{x} to a new partition P' for a new labelling \mathbf{x} ' such that $R_{\lambda} = R'_{\lambda}$ for any label $\lambda \neq \alpha, \beta$
 - Only the labels α and β in their current region $R_{\alpha\beta} = R_{\alpha} \cup R_{\beta}$ whereas all other labels in $R \neq R_{\alpha\beta}$ remain fixed.
 - In the general case, after an α - β -swap some pixels change their labels from α to β and some others -- from β to α .
- α expansion of an arbitrary label α is a move from a partition Pfor a current labelling **x** to a new labelling **x**' such that $R_{\alpha} \subset R'_{\alpha}$ and $R \setminus R'_{\alpha} = \bigcup_{\lambda \in L; \lambda \neq \alpha} R'_{\lambda} \subset R \setminus R_{\alpha} = \bigcup_{\lambda \in L; \lambda \neq \alpha} R_{\lambda}$

– After this move any subset of pixels can change their labels to lpha

Energy Minimisation Algorithms

Swap algorithm for semimetric interaction potentials

- 1. Initialization: An arbitrary labelling x
- 2. Iterative minimization: For every pair of labels $(\alpha, \beta) \in L^2$ taken in a fixed or random order:
 - **2.1** Find $\mathbf{x}^* = \arg \min_{\text{one } \alpha \beta \text{swap of } \mathbf{x}} E(\mathbf{x})$ with a min-cut/max-flow technique
 - **2.2** If $E(\mathbf{x}^*) < E(\mathbf{x})$, then accept the lower-energy labelling: $\mathbf{x} \leftarrow \mathbf{x}^*$

3. Stopping rule:

If a new labelling has been accepted for at least one pair of labels at Step

2.1, continue the minimisation process by returning to Step 2 Otherwise terminate the process and output the final labelling \mathbf{x}

Energy Minimisation Algorithms

Expansion algorithm for metric interaction potentials

- **1.** Initialization: An arbitrary labelling **x**
- **2.** Iterative minimization: For every label $\alpha \in L$ taken in a fixed or random order:

2.1 Find $\mathbf{x}^* = \arg \min_{\text{one } \alpha - \exp(\mathbf{x}) = 0} E(\mathbf{x})$ with a min-cut/max-flow technique **2.2** If $E(\mathbf{x}^*) < E(\mathbf{x})$, then accept the lower-energy labelling: $\mathbf{x} \leftarrow \mathbf{x}^*$

3. Stopping rule:

If a new labelling has been accepted for at least one label at Step 2.1, continue the minimisation process by returning to Step 2 Otherwise terminate the process and output the final labelling **x**

\mathbf{N}_i – the set of neighbours of the node i

Optimal Move: Swap Algorithm

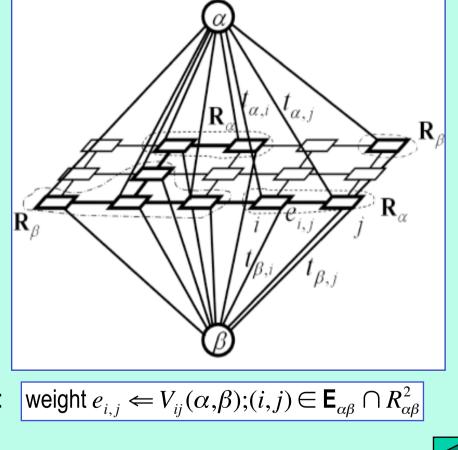
Graph $\mathbf{G}_{\alpha\beta} = [\mathbf{N}_{\alpha\beta}; \mathbf{E}_{\alpha\beta}]$ for a set of pixels with the labels α and β

- $\mathbf{N}_{\alpha\beta}$ two terminals, α and β , and all pixels in $R_{\alpha\beta}$
- Each pixel $i \in R_{\alpha\beta}$ is connected to the terminals by edges (*t*-links) $t_{\alpha,i}$ and $t_{\beta,i}$:

weight
$$t_{\alpha,i} \leftarrow V_i(\alpha) + \sum_{j \in \mathbf{N}_i; j \notin R_{\alpha\beta}} V_{ij}(\alpha, x_j)$$

weight $t_{\beta,i} \leftarrow V_i(\beta) + \sum_{j \in \mathbf{N}_i; j \notin R_{\alpha\beta}} V_{ij}(\beta, x_j)$

- Each neighbour pair $(i,j) \in R_{\alpha\beta}$ is connected by an edge $(n-\text{link}) e_{i,j}$:



Optimal Move: Swap Algorithm

A cut **C** on $\mathbf{G}_{\alpha\beta}$ must contain exactly one *t*-link for any pixel $i \in R_{\alpha\beta}$ Otherwise: either there would be a path between the terminals if both the links are included, or

a proper subset of **C** would become a cut if both the links are excluded

Therefore, any cut **C** provides a natural labelling \mathbf{x}_{c} :

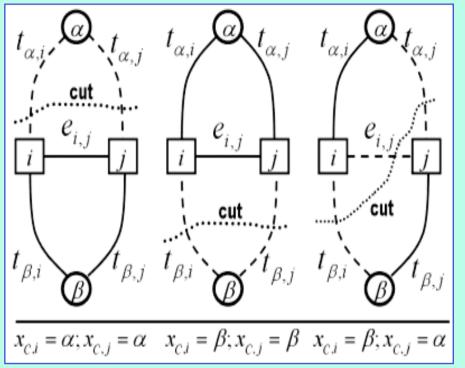
every pixel $i \in R_{\alpha\beta}$ is labelled with α or β if the cut **C** separates *i* from the terminal α or β , respectively, and the other pixels keep their initial labels:

$$\boldsymbol{\forall}_{i \in R} \ \boldsymbol{x}_{\mathbf{C},i} = \begin{cases} \alpha & \text{if} \quad i \in R_{\alpha\beta} \text{ and } t_{\alpha,i} \in \mathbf{C} \\ \beta & \text{if} \quad i \in R_{\alpha\beta} \text{ and } t_{\beta,i} \in \mathbf{C} \\ x_i & \text{if} \quad i \notin R_{\alpha\beta} \end{cases}$$

Optimal Move: Swap Algorithm

Each labelling $\mathbf{x}_{\mathbf{C}}$ corresponding to a cut \mathbf{C} on $\mathbf{G}_{\alpha\beta}$ is one α - β swap from the initial \mathbf{x}

- Any *n*-link e_{i,j} is included in a cut **C** only if the pixels *i* and *j* are linked to different terminals under the cut
- **Theorem** (BVZ,2001): The capacity $c(\mathbf{C})$ of the cut \mathbf{C} is the energy function $E(\mathbf{x}_{\mathbf{C}})$ plus a constant



Corollary (BVZ,2001): The lowest energy labelling within a single α - β -swap move from a current labelling **x** corresponds to the minimum cut labelling

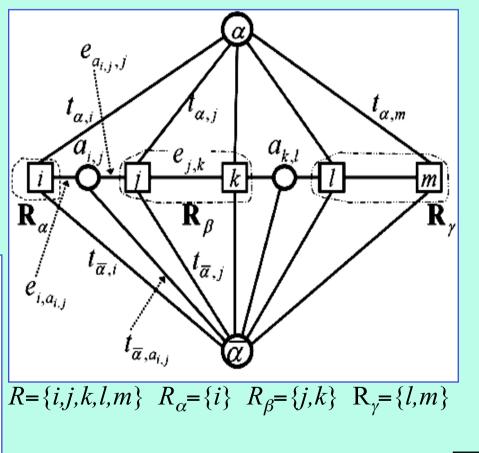
COMPSCI 773

Optimal Move: Expansion Algorithm

Graph $\mathbf{G}_{\alpha} = [\mathbf{N}_{\alpha}; \mathbf{E}_{\alpha}]$ for a set of pixels with the labels α and $\overline{\alpha}$

- \mathbf{N}_{α} two terminals, α and $\overline{\alpha}$, all pixels $i \in R$, and auxiliary nodes $a_{i,j}$ for each pair (i,j) of the nodes with the labels $x_i \neq x_j$
- Edge weights:

Edge	Weight	Condition
$t_{ar{lpha},i}$	∞	$i \in R_{lpha}$
$t_{ar{lpha},i}$	$V_i(x_i)$	$i otin R_{lpha}$
$t_{lpha,i}$	$V_i(lpha)$	$i\in R_{lpha}$
$t_{ar{lpha},a_{i,j}}$	$V_{ij}(x_i,x_j)$	
$e_{i,a_{i,j}}$	$V_{ij}(x_i, lpha)$	$(i,j) \in N; \ x_i \neq x_j$
$e_{a_{i,j},j}$	$V_{ij}(lpha,x_j)$	
$e_{i,j}$	$V_{ij}(x_i,lpha)$	$(i,j) \in N; \ x_i = x_j$



47

Optimal Move: Expansion Algorithm

Any cut **C** on **G**_{α} must include exactly one *t*-link for any $i \in R$ $\begin{array}{ll} \alpha & \text{if} \quad t_{\alpha,i} \in \mathsf{C} \\ x_i & \text{if} \quad t_{\bar{\alpha},i} \in \mathsf{C} \end{array}$ This provides a natural labelling: $\forall_{i \in R} x_{C,i} =$ An *n*-link $e_{i,j}$ is in **C** if $i, j \in R$ are connected to different terminals $l_{\alpha,i}$ α, j ζa,j The edge triplet $\mathbf{E}_{i,i}$ for $i, j \in R$ such that $x_i \neq x_i$ has the unique minimum cut due to the metric properties of the potentials: $l_{\overline{\alpha},a}$ if $t_{\alpha,i}, t_{\alpha,j} \in \mathbf{C}$ then $\mathbf{C} \cap \mathbf{E}_{i,j} = 0$ $\begin{array}{ll} \text{if} & t_{\overline{\alpha},i}, t_{\overline{\alpha},j} \in \mathbb{C} & \text{then} & \mathbb{C} \cap \mathbb{E}_{i,j} = t_{\overline{\alpha},a_{i,j}} \\ \text{if} & t_{\alpha,i}, t_{\alpha,j} \in \mathbb{C} & \text{then} & \mathbb{C} \cap \mathbb{E}_{i,j} = e_{i,a_{i,j}} \end{array}$ $t_{\overline{\alpha},i}$ if $t_{\alpha,i}, t_{\alpha,j} \in \mathbf{C}$ then $\mathbf{C} \cap \mathbf{E}_{i,j} = e_{\alpha_{i,j},j}$ $x_{c,i} = \alpha; x_{c,j} = \alpha \quad x_{c,i} = x_i; x_{c,j} = x_j \quad x_{c,i} = x_i; x_{c,j} = \alpha$ 48 COMPSCI 773

Optimality of Large Moves

- No proven optimality properties for the swap move algorithm
- Local minimum within a fixed factor of the global minimum for the expansion move algorithm
- **Theorem**[Boykov,Veksler,Zabih,2001]:

Let \mathbf{x}^* and \mathbf{x}° be the labellings for a local energy when the expansion moves are allowed and the global energy minimum, respectively. Then $E(\mathbf{x}^*) \leq 2\gamma E(\mathbf{x}^\circ)$ where

$$\gamma = \max_{(i,j)\in\mathsf{N}} \left(rac{\max_{lpha
eq eta \in \mathsf{L}} V_{i,j}(lpha,eta)}{\min_{lpha
eq eta \in \mathsf{L}} V_{i,j}(lpha,eta)}
ight)$$

