Minimum Cut / Maximum Flow

225 2
Dissimilarity Minimisation

+ 3-D surface by minimising energy (dissimilarity) of stereo images:

M | n Cut / Max FIOW Energy — Combinatorial optimisation on graphs specifying relationships
. . between neighbouring pairs of disparities and image signals
MlnlmlsatIOn — Generally, an NP-hard problem (the exponential complexity)
* Energy (dissimilarity) accumulates weights of nodes and edges
COMPSCI773S1T - Approximate iterative polynomial-time solution
+ Maximum flow / minimum cut algorithms applied to special graphs
VISION GUIDED CONTROL + Solution is provably within a fixed factor of the global minimum
H 2 + General maximum flow problem for a network, or a directed graph
A/P Georgy G’mel farb (digraph) G with two special nodes: a source, s, and a sink,
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Basic Notation Flows in Networks

+ G=[N,E] - a digraph (network) with sets of nodes N and edges E: * ¢(x,y) = 0 - a non-negative capacity of (x,y) € E
c: E— R=0=[0,%) - a capacity function on E

c(xx,) = 5.0 (X)) = 7.5

N = {5 5 %o oo} E = {rp i) ), oo} SN

- Chain: a sequence x,,...,x, such that (x;, x;,,) EE

- Path: a sequence x,,...,x, such that either (x;, x;,,) EE or (x;,,, x;) EE
- Set of the subsequent nodes “after x”: A(x) = {y EN| (x, y) EE}

- Set of the preceding nodes “before x": B(x) = {y EN | (y, x) EE}
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* s, t—the two distinguished nodes (source, sink)
- Edges then can be considered as “water pipes’”...

/2752 S

i Flow of Value 3 E={(@d). (@), (@)
Flows in Networks e oy

(x.5), (1)}

Static flow of value v from s to zin [N; E] is a function
f: E —=R=0 satisfying linear conditions:

* The flow through every edge does not exceed the edge capacity
Ve fy)=c(x,y)

Ss,a)=4

f(b,)=1

vV x=s
E Sx,y) - E f(y,x)=10 x=s1 |
YEA() YEB(x) I Sfx,s)=1 Assumption:
» Every node except s and 7 has equal inflow and outflow f(x,)=2 (i) = f (i)
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Static Max Flow Problem

+ Maximise the flow » subject to the flow constraints:
maxv : V(WEE f(x,y) sc(x,y)

v x=s
E flxy)- E f(yx)=40 x=s1; xEN
YEA(x) YEB(x) = mop

- A cut C of the network [N; E] is a set of edges such that their
removal separates the source s from the sink ¢
+ The cut breaks every chain of nodes from the source to the sink
- The capacity of the cut C is the total capacity of its edges, i.e.
the sum of their capacities
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Flow vs. Capacity of the Cut

Lemma 1 [Ford,Fulkerson;1956]:

Let a flow 1 from the source s to the sink 7 in a network [N;E]
have value v

Let C be a cut that separates s from ¢

Then the difference between the forward flow /' (C) from s to ¢
through C and the reverse flow /°, (C) from #to s through C
is equal to v and is not greater than the capacity of the cut:

v=[AC) = f(C) = c(C)
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Maximal Flow / Minimum Cut

Max-flow min-cut theorem [Ford,Fulkerson;1956]: For any
network the maximum flow value from s to # is equal to
the minimum cut capacity of all cuts separating s and #

Corollary 1: A flow is maximum if and only if (iff) there is
no flow augmenting path with respect to f
- Apath from s to ¢ is a flow augmenting path w.r.t. a flow " if
f< ¢ onforward edges of the path and /> 0 on reverse
edges of the path
- Fundamental importance of the corollary: to increase the
value of a flow, improvements are of a very restricted kind!

COMPSCI 773 10 ﬂ
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Cuts and Capacities

Example: the set of edges C = {(s,y),(x,y),(x,)} is a cut
separating s and ¢

Capacity of the cut ¢(C) =
c=1,f= c=3,1=2 clsy)+cley)+clot) =
’ 3 +1 + 3 =7

Flow through the cut f(C) =

Slsp) +fxey) +fxh) =
2 + 0 + 2 =4

COMPSCI 773 7

Meaning of Lemma 1

The equality in Lemma 1:

the value v of a flow from the source s to the sink ¢ is
equal to the net flow across any cut separating s and ¢

The inequality in Lemma 1:

the net flow across any cut separating s and z does not
exceed the capacity of the cut

Thus, the net flow from s to z is bounded by the capacities
of the cuts separating s and ¢

COMPSCI 773 9

Maximal Flow / Minimum Cut

- An edge (x,y) is saturated w.r.t. a flow f if f{x,y) = c(x,p)
and is flowless w.rt. f if flx,y) =0
Corollary 2: A cut C is minimum iff every maximum flow 1
saturates all forward edges of the cut whereas all
reverse edges of the cut are flowless w.r.t. /
* Meaning of Corollary 2: there are no flow augmenting paths
w.r.t. the maximum flow
+ The case of many sources and sinks with unrestricted flows is
equivalent to a single source, single sink case

COMPSCI 773 1
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Maximal Flow / Minimum Cut

- Union (U) of two cuts:
the set of edges between the union of all the source-side
nodes from each cut and all the other nodes in N

- Intersection (N) of two cuts:

the set of edges between the intersection of the source-side
nodes in these cuts and all the other nodes in N

5%o] Vo 2o "o o

Corollary 3: If C1 and C2 are minimum cuts, then the
union C1 U C2 and intersection C1 N C2 are also

minimum cuts
COMPSCI 773 12 %
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Informal Algorithm Description

Main idea of labelling (routine A): use a system of labels to
find paths between the source and the sink with unsaturated edges
+ Labelling begins from the source (getting the label 0)
+ Let anode x; be already labelled
1. Asubsequent node x; is not labelled if the edge (x;, x)) is saturated;
otherwise ( /{x;, x;) < c(x;, x;)) itis labelled with +4, that is, x*
2. Apreceding node x; is not labelled if the flow /(x;, x;) = 0;
otherwise (f(x;, x;) > 0) itis labelled with —i, that is, x;
Therefore, the network flow can be increased by increasing flow

through edges ending with (+)-nodes and decreasing it through
edges ending in (-)-nodes

COMPSCI 773 14 %
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Ford-Fulkerson Labelling Algorithm

+ Given an integral flow £, labels are assigned to nodes of
the network

- Nodes can be unlabelled (UN), labelled unscanned (LUN),
and labelled scanned (LSN)
- Alabel has one of the forms (x*,¢) or (x,&), where x €N
and s a positive integer or infinity (c)
Routine A: Labelling
— Initially all nodes are unlabelled (UN) :
The source node is LUN (-, &(s) = =)
Other nodes are UN

COMPSCI 773 16 %
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Ford—Fulkerson Labelling Algorithm

Proof of the max-flow / min-cut theorem provides, under mild
restrictions on the capacity function, a simple efficient algorithm
for constructing a maximal flow and minimal cut in a network

+ Initialization: the zero flow
+ Sequence of “labellings” (Routine A), each of which
- either results in a flow of higher value (Routine B) or

- terminates with the conclusion that the present flow is
maximal (to ensure termination: integer capacities!)

COMPSCI 773

Informal Algorithm Description

+0 ~i +a
5 X, X; x; x, X x

3 e
O —0 - @+—0 o - @
[ sgsx,) < (s95%,) FOpx)>0 f(x,xp) <e(xsXp)  f(x,00) <c(x,.0)

If the sink is labelled, then there exists a flow augmenting path

between the source and the sink such that all its nodes are

labelled with the indices of their preceding nodes

- Because such a path contains only unsaturated edges, all the flows via its
edges can be changed by a value

h= rﬂin {c(xq X = f (), f (" x, )} >0
(x, ;" )Epath
(5™ %, )Epath

— The flow via an edge is increased by # if the edge is oriented from s to ¢
(from the source to the sink) and decreased by % otherwise

COMPSCI 773
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Ford—Fulkerson Labelling Algorithm

Routine A: Labelling (cont.)

— For every LUN x having the label (z*, &(x)):
(1) Convert all UN y “after x” (i.e. in 4(x)) such that
Sx,p) < c(x,y) into LUN with the labels
(x*,&(y) = min[&(x), c(x.y) = flx,y) 1), and
(2) Convert all UN y “before x” (i.e. in B(x)) such that
fvx) > 0 into LUN with the labels

(x%e(y) = min[e(x), fiy.x) 1)
(3) Such x is now LSN

- Ifthe sink ¢ is LUN, go to Routine B; otherwise (z is UN) - stop

COMPSCI 773
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Ford-Fulkerson Labelling Algorithm

Routine B: Flow change (the sink has been labelled (%, &(z))):
- Ifzis labelled (y*,&(?)), replace f{y,r) with f(y,7) + &(2)
- Ifzislabelled (y7,&(2)), replace f{z,y) with f(z,y) — &(¢)
— In either case,
if node y is labelled (x*,(¢)), replace f(x,y) with f{x,y) + &(¢)

if node y is labelled (x,&(»)), replace f{y,x) with f{v,x) — &(¥)
and go on to node x

- Stop the flow change when the source s is reached, discard
the old labels, and go back to Routine A

COMPSCI 773 18 ﬂ
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Ford-Fulkerson Labelling Algorithm

Node x: fix,y) = c(x,p) = 1
Node #: f(y,f) = c(y,f) =1
fx)=0<c(x)=3

Node x: f{y,x) =0<c(yx) =1
min{e(y), c(y,x) = Ay.x)}

Step 3 -
(t,min{3,1-0}=1)

B
COMPSCI 773 20 ﬂ
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Ford-Fulkerson Labelling Algorithm

(s.2)

(sm.1)
New flow value 3 New labelling:
non-sink stop
COMPSCI 773 2 ﬂ
=]
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Ford—Fulkerson Labelling Algorithm

Labelling searches for a flow augmenting path from s to  :

If Routine A ends and the sink is not labelled, the flow is maximum
and the set of edges from UN to L*N nodes is a minimum cut

+ Example: Routine A for s:
Node x: f(s,x) = c(s,x) = 1
Step 1 [Node y: fls) =0 < c(s.y) =3 |
(=) Step 2

11 (smmoo3 0} =3)
3 / min{&(s), c(s,y) — /(‘))‘

COMPSC\ 773 19 5

Ford—Fulkerson Labelling Algorithm

(S*,3)
New flow value 2

A flow augmenting path is located by backtracking from the
sink ¢ according to directions given in labels along which a
flow change of &(¢) = 1 can be made

COMPSCI 773 21 5

Polynomial-Time Max-Flow

Maximum flow in the n-node , m-edge network (graph):
+ Ford-Fulkerson (finding augmenting paths;1956): O(1nm?)
+ Dinic (shortest augmenting paths in 1 step; 1970): O(n%m)
- Graphs: dense — O(n?); sparse — O(nm log n)
+ Goldberg-Tarjan (pushing a pre-flow; 1985): (nmlog( /m))
- Karzanov's pre-flow: the flow in and out of nodes may not be
equal (the difference at node j is called the excess at ;)

- Aggressive-passive mode: push as much as possible into
the graph, then trim the excess to 0; no flow until the end

COMPSCI 773 23 5
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Goldberg-Tarjan Push-Label Algorithm
Relabelling eventually makes 0 the excess at each node
+ Excess e(x) atxis e(x) = E‘,EEMf(y,X) —E‘,EA(()f(x,y)
- Thenode x is active if e(x) >0 o
- The source and sink are never active
+ Residual capacity of an edge (x,y):
r(x,y) = c(xp) ~ flxy) + fy.x)
- Residual network (graph): RG = {(x,y) : (x,y) > 0}
+ Distance function ¢:N—R for the nodes:
(1) d()=0;
(2) if (x,y) EEand c(x,y) > 0 thend(x) = d(y) + 1
COMPSCI 773 24 %
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Goldberg-Tarjan Push-Label Algorithm

+ Processing (cont.):
If (x,y) €EE, d(x)=d(y) + 1, r(x,y) > 0 or
(y,x) EE, d(x) =d(y) + 1, r(x,y) > 1, then
push min{e(x), 7(x,y)} from x to y and change f"accordingly
(pushing as much as the excess at the node and the residual
capacity of or from the edge (x,y) allows)

If nothing can be pushed from x, relabel x by replacing d(x) with
min{ d(y) + 1 : (x,y) € A(x) and r(x,y) > 0 }
+ Once processing is finished, the pre-flow is a max flow

g

COMPSCI 773

D.M.Greig, B.TPorteous, A H.Seheult: Exact Maximum A Posteriori Estimation for Binary Images.
Journal of the Royal Statistical Society, Ser. B, Vol.51 (2), pp.271-279, 1989

Energy Minimization via Graph Cuts

+ [D. M. Greig e.a., 1989]: Denoising binary images
Noisy signals y=(y;: i = 1,...,n) are conditionally independent,
given a noiseless image x=(x;: i = 1,...,n):

Py =TT po,1x) =] pe: 10~ p(y; 1"

T " (p(y; 1) K

—H,:‘p(y lo)Hi:\( p(y; |0))

Prior image model: a 2"-order Markov random field (MRF):
Poo et 3 B[xx,+A-x)0-x,)])

where 8= 0; f3; = B; = 0 (neighbours if the strict inequality):
i.e. the model of more probable identical neighbours (x; = x;)

COMPSCI 773
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Goldberg-Tarjan Push-Label Algorithm

+ Initialisation:
— d(s)=|N| (the number of nodes in a network)
-d=0
— d(x)=1forallx = s,t
— fls,x) = c(s,x) for every edge (s,x) EE

+ Processing while an active node (e(x) > 0) exists:
- Select an active node x and
— Try to push more pre-flow towards the sink

COMPSCI 773 25 |Z|
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Goldberg-Tarjan Push-Label Algorithm
x |y |sx|sy|yx|xt|yt]|Actve
101460 f0|0] xy
1146|045y
1024|6045y
102 4)6|1|4|5][ «
3024|6145 «x
3|2(4]6|0]4|5] y
34460 a][5]
34461 ]a]5] x
504(4)6|1)4|5][ «
5/4[3|6|1]4]5
COMPSCI 773 27 |Z|
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Negative Likelihood as Energy
+ Log-likelihood (apart from an additive constant):
L(x1y) <InP(y I x)P(x)
=3 A+ %E;Ejzlﬁu[x,xj +(1-x)(1-x))]
where 4, = log{p(y{1}/p(v|0)}
+ Bayesian maximum a priori (MAP) image estimate:
x* = arg max, L(x|y) = arg min, [-L(x]y)]
- Pixel-wise simulated annealing, ICM do not approach the
MAP even after hundreds or thousands of iterations...
COMPSCI 773 29 |Z|
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D.M.Greig, B.TPorteous, A H.Seheult: Exact Maximum A Posteriori Estimation for Binary Images.
Journal of the Royal Statistical Society, Ser. B, Vol.51 (2), pp.271-279, 1989

Noiseless image x
MRF prior: ;= 8

A A A

S
Stochastic ~ ICM lIterated
annealing  conditional modes

Stochastic ICM Iterated
annealing  conditional modes
—

A

ﬁ»/_U7

By=

MAP: Stochastic ICM Iterated
Bi=11 annealing  conditional modes
COMPSCI 773
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Network Representation

= log{p(y|1}/p(y{0)}:
A;>0fory,=1 @
and
A <0fory,=0 <
Example:
Vi =%
x.) = =
102 y=x
log,4=2 y,=1
" |-log,4=-2 y,=0

8

COMPSCI 773

Energy Minimisation via Graph Cut

+ Capacity of the cut:
C(x) = Ex max{0,-A} + E(l x,)max{0,A,}
g i

| / ‘\'::; i
. 1220 -)

F5 1
0

X;
)

inl jol
- Differs from [-L(x[y)] by a term that is independent of x
+ Maximizing this likelihood is equivalent to minimizing
the capacity of the cut, i.e. to finding the minimum cut,
or the maximum flow through the network
34 %
=]
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T-links (terminal links):

+ Directed edge (s,) with the
capacity ¢,; = A, if A, > 0

+ Directed edge (i,7) with the
capacity ¢;, = —A,if A, =0

N-links (neighbouring links):

+ Undirected edge (i,)
between two internal nodes —
neighbours i and j with the
capacity c; = ; >0

COMPSCI 773 31 |Z|
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Energy Mlnlmlsatlon via Graph Cut
G _source s
S B={s} U {icx;,=1} and
O W= {iix;=0} U {t} —a 2-set
partition of the nodes for any
binary image x
Cut - a set of edges (i,f) such
that;iEBandj EW
Capacity of the cut: p'f‘f":
C(x)= Ecéf Y
(i,j)EE: ‘
iE€B: JEW
COMPSCI 773 33 |Z|
[>]
2

Energy Minimisation via Graph Cut

* [Greige. a., 1989] Accelerated Ford-Fulkerson algorithm:
- Partitioning the image into 2% x 2X connected sub-images
- Calculate the MAP estimate for each sub-image separately
- Amalgamate the sub-images to form a set of 2571 x 2571

larger sub-images
- Form the MAP estimate for each of them
- Continue until the MAP estimate of the complete image
Simulated annealing: does not necessarily produce a good

approximation of an MAP estimate and becomes bogged down
by local maxima resulting in under-smooth solutions

COMPSCI 773 35
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Energies Minimised via Graph Cuts

Theorem [Friedman,Drineas,2005; generally, it is a folklore of the
combinatorial optimisation: Papadimitriou, Steiglitz, 1986]:

Let EGx,....x,) = 2, B xx; + L
where x; €{0,1} and L is linear in x; plus constants
(ie. L =ZAx +c)

Then E can be minimised via graph cut techniques if and
onlyif ;< 0forall7,j €{1,2,..., n}

COMPSCI 773 36 ﬂ
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Energies Minimised via Graph Cuts

Energy terms depending on signals and pairs of signals (class F?):
E(xy,...x,) = T E(x) + 2 Ejx;, x); x,€ {0,1}
Ey(x;x)=ES(1-x)(1-x,)+ Ej'(1-x)x;
+ELx,(1-x)+ Elxx;
E(X;0.0X,) = E,,(EI?O v ENEY - EP)xa, + L
Such energy function can be minimised via graph cuts if and only if:
00 11 01 10 P
Ej +E; -E; -E;’ <0 Vi, j

regularity condition

COMPSCI 773 38 ﬂ
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Energies Minimised via Graph Cuts

Proof of “if” part (“only if’: see [Papadimitriou, Steiglitz, 1986]):
* Energyisrewrttenas =%,  ax(l-x)+A
where ;= —f3;and the linear term A is altered
* Minimal E over the binary x; = a min cut in a complete
graph with n nodes and edge weights w; = ;
— The cut separates the nodes with x,= 0 from those with x= 1
(because only x;= 1 and x; = 0 adds c; o the energy)
Polynomial-time min cut if and only if w; ;= 0 = ;< 0
— For the altered linear term A = Zyx; + o

+ An edge (s,i) with the weight w=; if ;= 0 and an edge (i,r) with
w;, = |y| if y; < 0; therefore, all weights are non-negative

COMPSCI 773 37 5
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Large Moves via Min-Cut/Max-Flow

[Boykov,veksler,zabin,2001] Approximate energy minimisation by
replacing pixel-wise optimising moves with large moves
- Convergence to a solution being provably within a known
factor of the global energy minimum
- Energy function minimised w.r.t. a labelling x = (x,,...,x,):
E(x)ye.0%,) = 2\/,():,)+ EV,](x,,x/); X EL i=1...n
i=1 (i J)EN
where L = {1, ..., L} - an arbitrary finite set of labels
NC {1, ..., n}?- a set of neighbouring (interacting) pixel pairs
V:: L — R - a pixel-wise potential function (energy of labels)
V;: L2 — R - a pair-wise potential function (energy of label pairs)

Conditions and Optimal Moves

+ Arbitrary pixel-wise energies V;
* Semimetric or metric pair-wise energies V;;
- Semimetric: ¥, ;o V;(a.0) = 0; V() = Vi(f.c) = 0
~ Metric: also the triangle inequality V,(c8) < V,(a7) + V(1)
+ Each labelling x partitions the pixel set R = {1, ..., n} into L
subsets R, = (i | i ER; x;,= AE L}
— Conditionally optimal large moves change each partition P = {R,: A€ L}
to approach a certain vicinity of the global minimum of the partition energy

* a—f-swap (with the semimetric ;)
* a-expansion (with the metric 7;)

AP Georgy Gimel'farb
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a,f}-swap and a -expansion

a,f3 - swap for an arbitrary pair of labels ¢, 8 € L is a move from a
partition P for a current labelling x to a new partition P”for a new
labelling x “such that R,=R ", for any label A = «,

~ Only the labels czand Bin their current region R, = R, UR,;
whereas all other labels in R = R,,; remain fixed.

- Inthe general case, after an a--swap some pixels change their
labels from o to 8and some others -- from Sto cx.

a - expansion of an arbitrary label «is a move from a partition P
for a current labelling x to a new labelling x “such that R, C R,
and R\R', = U 3. R CRR, = Uy 0 Ry

— After this move any subset of pixels can change their labels to &

COMPSCI 773 41 5
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Energy Minimisation Algorithms

Swap algorithm for semimetric interaction potentials

1. Initialization: An arbitrary labelling x

2. lterative minimization: For every pair of labels (o, 8) € L?
taken in a fixed or random order:
2.1 Find X* = arg Mingng g guap of x £(X) With @ min-cut/max-flow technique
2.2 If E(x*) < E(x), then accept the lower-energy labelling: x < x*

3. Stopping rule:

If a new labelling has been accepted for at least one pair of labels at Step
2.1, continue the minimisation process by returning to Step 2
Otherwise terminate the process and output the final labelling x

COMPSCI 773 42 ﬂ
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N; - the set of neighbours of the node i

Optimal Move: Swap Algorithm

Graph G,,=[N,4E 4 for a set of

plxels W|th the Iabels aand

- two terminals, zand g,

and all pixelsin R 5
Each pixel i € R, is connected
to the terminals by edges (t-links)
tg;and g,
weightr,,, <= Vi@ + DV, (a.x))

JENTER

wewghw,cvxw Ev,,us..m

Each neighbour palr (@i, ])ER
connected by an edge (- ||nk e ‘we\gm e, =V, (ap;i,)EE,N

u/l

COMPSCI 773 44 ﬂ
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Optimal Move: Swap Algorithm

Each labelling x corresponding
toacutCon G,aﬁ,is one a—f-
swap from the initial x

- Any rHlink e, is included in a
cut C only if the pixels i and j
are linked to different terminals
under the cut N

Theorem (BVZ,2001): The capacity
¢(C) of the cut C is the energy
function E(xg) plus a constant | %o, =%, =& 3, = fixg = f x, = fx =a

Corollary (BVZ,2001): The lowest energy labelling within a single ¢ /}swap

move from a current labelling x corresponds to the minimum cut labelling

COMPSCI 773 46 ﬂ
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Energy Minimisation Algorithms

Expansion algorithm for metric interaction potentials
1. Initialization: An arbitrary labelling x
2. lterative minimization: For every label o € L taken in a fixed
or random order:
2.1 Find x*= arg Mingy o-espansion ot x £(X) With @ min-cut/max-flow technique
2.2 If E(x*) < E(x), then accept the lower-energy labelling: x < x*
3. Stopping rule:

If a new labelling has been accepted for at least one label at Step 2.1,
continue the minimisation process by returning to Step 2
Otherwise terminate the process and output the final labelling x

COMPSCI 773 43 5

Optimal Move: Swap Algorithm

Acut C on G, must contain exactly one t-link for any pixel i € R 5

Otherwise: either there would be a path between the terminals if both the
links are included, or
a proper subset of C would become a cut if both the links are excluded
Therefore, any cut C provides a natural labelling x¢:
every pixel i € R 5 is labelled with czor Bf the cut C separates 7 from the
terminal o or 3, respectively, and the other pixels keep their initial labels:
a if i€ER, and 1,,EC
Viex Xc,=18 if i€ER, and 1,,EC
x, if i€R,

COMPSCI 773 45 5

Optimal Move: Expansion Algorithm

Graph G_=[N,E ] for a set of
pixels with the labels azand &
- N, - two terminals, @and &, all
pixels i € R, and auxiliary
nodes a; for each pair (i,/) of
the nodes with the labels x;=x;

- Edge weights:
Edge | Weight Condition
tai oo i € Ro
tai Vi(z:) i¢ Ra
tag Vi(e) i€ R,

taa,, | Vij(®i,zj)
Ciass | Vi) | (,9) €Ns @i # o5 || Regi 7 —{it R0 =

S ngwg (@9) €N @i 2 || R=fijklm} R={i} R=U,k} R~{Lm}
e | Vij(zi,@) [ () eN; zi==x;

COMPSCI 773 47 5
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properties of the potentials:

An n-link e isinCifi,j € Rare
connected to different terminals
The edge triplet E; fori,jER | /.
such that X=X, has the unique | | :
minimum cut due to the metric

Optimal Move: Expansion Algorithm

Any cut C on G, must include exactly one t-link for any i € R

a if te,€C

This provides a natural labelling: | Vicr zc,: = { i teieC

if t,.1,,€C then CNE =0

witlas
wita.
witlas

wirlas

if t,.t,,EC then CNE  =t,
if t,.,,EC then CNE  =¢,

if t,.1,,EC then CNE  =e,

][

COMPSCI 773

Optimality of Large Moves

+ No proven optimality properties for the swap move algorithm

+ Local minimum within a fixed factor of the global minimum for the
expansion move algorithm

+ Theorem([Boykov,Veksler,Zabih,2001]:

Let x* and x° be the labellings for a local energy when the
expansion moves are allowed and the global energy minimum,
respectively. Then E(x*) < 2yE(x°) where

_ maxazgel Vij(a, ﬁ))
(hyen ( mingyger Vi (e, B)
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