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Dissimilarity Minimisation 

•  3-D surface by minimising energy (dissimilarity) of stereo images: 
–  Combinatorial optimisation on graphs specifying relationships 

between neighbouring pairs of disparities and image signals 

–  Generally, an NP-hard problem (the exponential complexity) 
•  Energy (dissimilarity) accumulates weights of nodes and edges  

–  Approximate iterative polynomial-time solution 
•  Maximum flow / minimum cut algorithms applied to special graphs 

•  Solution is provably within a fixed factor of the global minimum 

•  General maximum flow problem for a network, or a directed graph 
(digraph)  G with two special nodes: a source, s, and a sink, t 

COMPSCI 773 2 

Basic Notation 

•  G=[N,E] - a digraph (network) with sets of nodes N and edges E: 

N = {xa, xb, xc, …}; E = {(xa, xb),(xa, xc ), …} ⊆ N2   
–  Chain: a sequence x1,…,xn such that (xi, xi+1) ∈ E 

–  Path: a sequence x1,…,xn such that either (xi, xi+1) ∈ E or (xi+1 , xi) ∈ E 
–  Set of the subsequent nodes “after x”: A(x)  = {y ∈ N | (x, y) ∈ E} 
–  Set of the preceding nodes “before x”: B(x)  = {y ∈ N | (y, x) ∈ E} 
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Flows in Networks 

•  c(x,y) ≥ 0 – a non-negative capacity of (x,y) ∈ E 
c: E → R≥0 = [0,∞) – a capacity function on E  

•  s, t – the two distinguished nodes (source, sink) 
–  Edges then can be considered as “water pipes”… 
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Flows in Networks 

Static flow of value v from s to t in [N; E] is a function     
f: E →R≥0  satisfying linear conditions: 

•   The flow through every edge does not exceed the edge capacity 

•   Every node except s and t has equal inflow and outflow 
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    Flow of Value 3 
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f (s,a)=4 f  (a,b)=1 

f  (b,t)=1 
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Assumption: 
c(i,j) ≥ f  (i,j) 

f  (a,t)=1 f  (a,x)=2 

f (s,b)=4 

f (t,s)=1 

f (x,s)=1 

f  (b,x)=1 

f  (x,t)=2 

N ={a, b, s, t, x} 

E ={(a,b), (a,t), (a,x),  
        (b,t), (b,x),  
        (s,a), (s,b), (t,s),  
        (x,s), (x,t)} 
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Static Max Flow Problem 

•  Maximise the flow v subject to the flow constraints: 

–  A cut C of the network [N; E] is a set of edges such that their 
removal separates the source s from the sink t 

•  The cut breaks every chain of nodes from the source to the sink 

–  The capacity of the cut C is the total capacity of its edges, i.e. 
the sum of their capacities 
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Cuts and Capacities 

Example: the set of edges C = {(s,y),(x,y),(x,t)}  is a cut 
separating s and t 

s t 

x 

y 

c = 1, f = 1 

3,2 
1,0 

c = 3, f = 2 

1,1 

1,1 

Capacity of the cut c(C) = 
   c(s,y) + c(x,y) + c(x,t) = 
       3    +    1    +    3    =  7 

Flow through the cut  f (C) = 
   f (s,y) + f (x,y) + f (x,t)   =
       2    +    0    +    2   =  4
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Flow vs. Capacity of the Cut 

Lemma 1 [Ford,Fulkerson;1956]:  
Let a flow f  from the source s to the sink t in a network [N;E] 

have value v  
Let C be a cut that separates s from t 
Then the difference between the forward flow f s-t(C) from s to t 

through C and the reverse flow f t-s(C)  from t to s through C   

is equal to v and is not greater than the capacity of the cut: 

v = f s-t(C) - f t-s(C) ≤ c(C) 
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Meaning of Lemma 1 

The equality in Lemma 1: 

    the value v of a flow from the source s to the sink t is 
equal to the net flow across any cut separating s and t 

The inequality in Lemma 1:  
    the net flow across any cut separating s and t does not 

exceed the capacity of the cut 

Thus, the net flow from s to t is bounded by the capacities 
of the cuts separating s and t 
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Maximal Flow / Minimum Cut 

Max-flow min-cut theorem [Ford,Fulkerson;1956]: For any 
network the maximum flow value from s to t is equal to 
the minimum cut capacity of all cuts separating s and t 

Corollary 1: A flow is maximum if and only if (iff) there is 
no flow augmenting path with respect to f  
–  A path from s to t is a flow augmenting path w.r.t. a flow f  if   

f < c  on forward edges of the path and  f  > 0 on reverse 
edges of the path 

–  Fundamental importance of the corollary: to increase the 
value of a flow, improvements are of a very restricted kind! 
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Maximal Flow / Minimum Cut 

–  An edge (x,y) is saturated w.r.t. a flow f  if f(x,y) = c(x,y) 
and                 is flowless  w.r.t. f              if f(x,y) = 0 

Corollary 2: A cut C is minimum iff every maximum flow f 
saturates all forward edges of the cut whereas all 
reverse edges of the cut are flowless w.r.t. f 

•  Meaning of Corollary 2: there are no flow augmenting paths 
w.r.t. the maximum flow  

•  The case of many sources and sinks with unrestricted flows is 
equivalent to a single source, single sink case 
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Maximal Flow / Minimum Cut 

–  Union (∪) of two cuts:                  
the set of edges between the union of all the source-side 
nodes from each cut and all the other nodes in N 

–  Intersection (∩) of two cuts:                  
the set of edges between the intersection of the source-side 
nodes in these cuts and all the other nodes in N   

Corollary 3: If C1 and C2 are minimum cuts, then the 
union C1 ∪ C2 and intersection C1 ∩ C2 are also 
minimum cuts 

s t s t s t 
C1 ∪ C2  C1 ∩ C2  C1  

C2  
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Ford–Fulkerson Labelling Algorithm 

•  Proof of the max-flow / min-cut theorem provides, under mild 
restrictions on the capacity function, a simple efficient algorithm 
for constructing a maximal flow and minimal cut in a network 

•  Initialization: the zero flow 

•  Sequence of “labellings” (Routine A), each of which  
–  either results in a flow of higher value (Routine B) or  

–  terminates with the conclusion that the present flow is 
maximal (to ensure termination: integer capacities!) 

Informal Algorithm Description  

•  Main idea of labelling (routine A): use a system of labels to
 find paths between the source and the sink with unsaturated edges  

•  Labelling begins from the source (getting the label 0)  

•  Let  a node xi be already labelled 

1.  A subsequent node xj is not labelled if the edge (xi, xj) is saturated;
 otherwise ( f (xi, xj) < c(xi, xj)) it is labelled with +i, that is, xj

+i 

2.  A preceding node xj is not labelled if the flow f (xj, xi) = 0;
 otherwise (f (xj, xi) > 0) it is labelled with -i, that is, xj

-i 

•  Therefore, the network flow can be increased by increasing flow
 through edges ending with (+)-nodes and decreasing it through
 edges ending in (-)-nodes  
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Informal Algorithm Description 

                            …                       …                       … 

•  If the sink is labelled, then there exists a flow augmenting path
 between the source and the sink such that all its nodes are
 labelled with the indices of their preceding nodes 
–  Because such a path contains only unsaturated edges, all the flows via its

 edges can be changed by a value 

–  The flow via an edge is increased by h if the edge is oriented from s to t
 (from the source to the sink) and decreased by h otherwise 
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Ford–Fulkerson Labelling Algorithm 

•  Given an integral flow f, labels are assigned to nodes of 
the network 
–  Nodes can be unlabelled (UN), labelled unscanned (LUN), 

and labelled scanned (LSN) 
–  A label has one of the forms (x+,ε) or (x-,ε), where x ∈ N 

and ε is a positive integer or infinity (∞) 

Routine A: Labelling 
–  Initially all nodes are unlabelled (UN) : 
           The source node is LUN (-, ε(s) = ∞)  
           Other nodes are UN 
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Ford–Fulkerson Labelling Algorithm 

Routine A: Labelling (cont.) 
–  For every LUN x having the label (z±,ε(x)):  

(1) Convert all UN y “after x” (i.e. in A(x)) such that         
f(x,y) < c(x,y) into LUN with the labels                             
( x+,ε(y) = min[ε(x), c(x,y) - f(x,y) ] ), and  

(2) Convert all UN y “before x” (i.e. in B(x)) such that      
f(y,x) > 0 into LUN with the labels                                
( x-,ε(y) = min[ε(x), f(y,x) ] )  

(3) Such x is now LSN 
–  If the sink t is LUN, go to Routine B; otherwise (t is UN) - stop 
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Ford–Fulkerson Labelling Algorithm 

Routine B: Flow change (the sink has been labelled (y±,ε(t))): 
–  If t is labelled (y+,ε(t)), replace f(y,t) with f(y,t) + ε(t) 
–  If t is labelled (y-,ε(t)), replace f(t,y) with f(t,y) - ε(t) 
–  In either case,  

    if node y is labelled (x+,ε(t)), replace f(x,y) with f(x,y) + ε(t) 
    if node y is labelled (x-,ε(y)), replace f(y,x) with f(y,x) - ε(t) 

and go on to node x 
–  Stop the flow change when the source s is reached, discard 

the old labels, and go back to Routine A 
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Ford–Fulkerson Labelling Algorithm 

Labelling searches for a flow augmenting path from s to t : 
If Routine A ends and the sink is not labelled, the flow is maximum 

and the set of edges from UN to L*N nodes is a minimum cut 

•  Example: 

s t 

x 

y 

1,1 

3,0 
1,1 

3,0 

1,1 

1,0 (-,∞) 

Routine A for s: 
   Node x:  f (s,x) = c(s,x) = 1 
   Node y: f(s,y) = 0 <  c(s,y) = 3 Step 1 

Step 2 
(s+,min{∞, 3 - 0} = 3) 

(s+,3) 
min{ε(s), c(s,y) - f(s,y)} 
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Ford–Fulkerson Labelling Algorithm 

s t 

x 

y 

1,1 

3,0 
1,1 

3,0 

1,1 

1,0 (-,∞) 

Step 3 

(s+,3) 

s t 

x 

y 

1,1 

3,0 
1,1 

3,0 

1,1 

1,0 (-,∞) 

(s+,3) 

Node x:  f(y,x) = 0 < c(y,x) = 1 

(y+,min{3,1-0}=1) 
min{ε(y), c(y,x) - f(y,x)} 

(y+,1) 

Node x: f(x,y) = c(x,y) = 1 
Node t: f(y,t)  = c(y,t) = 1 
            f(x,t) = 0 < c(x,t) = 3 

Step 4 

(x+,1) 
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Ford–Fulkerson Labelling Algorithm 

s t 

x 

y 

1,1 

3,0 → 1 
1,1 

3,0 → 1 

1,1 

1,0 → 1 

(-,∞) 

(s+,3) 

(x+,1) 

(y+,1) 

A flow augmenting path is located by backtracking from the 
sink t according to directions given in labels along which a 
flow change of ε(t) = 1 can be made 

s t 

x 

y 

1,1 

1,1 

1,1 

1,1 
3,1 
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New flow value 2 
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Ford–Fulkerson Labelling Algorithm 

s t 

x 

y 

1,1 

3,1 → 2 
1,1 

3,1 → 2 

1,1 

1,1 → 0 

(-,∞) 

(s+,2) 

(x+,1) 

(y-,1) 

New flow value 3                                 New labelling: 
                                                                       non-sink stop 
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Polynomial-Time Max-Flow 

Maximum flow in the n-node , m-edge network (graph): 

•  Ford–Fulkerson (finding augmenting paths;1956): O(nm2) 
•  Dinic (shortest augmenting paths in 1 step; 1970): O(n2m) 

–  Graphs: dense – O(n3); sparse – O(nm log n) 

•  Goldberg–Tarjan (pushing a pre-flow; 1985):  
–  Karzanov’s pre-flow: the flow in and out of nodes may not be 

equal (the difference at node j is called the excess at j) 
–  Aggressive-passive mode: push as much as possible into 

the graph, then trim the excess to 0; no flow until the end € 

O nm log n2 m( )( )
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Goldberg–Tarjan Push-Label Algorithm 

Relabelling eventually makes 0 the excess at each node 
•  Excess e(x) at x is 

–  The node x is active if e(x) > 0 
–  The source and sink are never active 

•  Residual capacity of an edge (x,y):     
       r(x,y) = c(x,y) - f(x,y) + f(y, x)  
–  Residual network (graph): RG = {(x,y) : r(x,y) > 0} 

•  Distance function d:N→R for the nodes:         
(1)   d(t) = 0;        
(2)    if (x,y) ∈ E and c(x,y) > 0  then d(x) ≤ d(y) + 1 

€ 

e(x) = f (y,x) −
y∈B (x )∑ f (x,y)

y∈A (x )∑
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Goldberg–Tarjan Push-Label Algorithm 

•  Initialisation:  
–  d(s) = |N|     (the number of nodes in a network) 
–  d(t) = 0 
–  d(x) = 1 for all x ≠ s,t 
–  f(s,x) = c(s,x) for every edge (s,x) ∈ E 

•  Processing while an active node (e(x) > 0) exists:  
–  Select an active node x and  

–  Try to push more pre-flow towards the sink 
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Goldberg–Tarjan Push-Label Algorithm 

•  Processing (cont.): 
If  (x,y) ∈ E, d(x) = d(y) + 1, r(x,y) > 0 or                          

(y,x) ∈ E, d(x) = d(y) + 1, r(x,y) > 1, then  

  push min{e(x), r(x,y)} from x to y and change f accordingly 
(pushing as much as the excess at the node and the residual 
capacity of or from the edge (x,y) allows) 

If nothing can be pushed from x, relabel x by replacing d(x) with 
min{ d(y) + 1 : (x,y) ∈ A(x) and r(x,y) > 0 } 

•  Once processing is finished, the pre-flow is a max flow 
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Goldberg–Tarjan Push-Label Algorithm 

s t 

x 

y 

4 0 

135 

124 

4,43 

6,6 

2,0101 

4,04 

5,05 

Iter. x y s,x s,y y,x x,t y,t Active 

1 1 1 4 6 0 0 0 x,y 
2 1 1 4 6 0 4 5 y 
3 1 2 4 6 0 4 5 y 
4 1 2 4 6 1 4 5 x 
5 3 2 4 6 1 4 5 x 
6 3 2 4 6 0 4 5 y 
7 3 4 4 6 0 4 5 y 
8 3 4 4 6 1 4 5 x 
9 5 4 4 6 1 4 5 x 

10 5 4 3 6 1 4 5 
capacity 
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Energy Minimization via Graph Cuts 

•  [D. M. Greig e.a., 1989]: Denoising binary images 
Noisy signals y=(yi: i = 1,…,n) are conditionally independent, 

given a noiseless image x=(xi: i = 1,…,n): 

Prior image model: a 2nd-order Markov random field (MRF):  

where βii = 0; βij = βji ≥ 0 (neighbours if the strict inequality): 
i.e. the model of more probable identical neighbours (xi = xj)  

€ 

P(y | x) = p(yi | xi) ≡ p(yi | 0)
1−xi p(yi |1)

xi
i=1

n
∏

i=1

n
∏

= p(y | 0) p(yi |1)
p(yi | 0)

 
 
  

 
 

i=1

n
∏

i=1

n
∏

xi

€ 

P(x)∝exp 1
2 βij xix j + (1− xi)(1− x j )[ ]j=1

n
∑i=1

n
∑ 

 
  

 
 

D.M.Greig, B.T.Porteous, A.H.Seheult: Exact Maximum A Posteriori Estimation for Binary Images.
 Journal of the Royal Statistical Society, Ser. B, Vol.51 (2), pp.271-279, 1989 
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Negative Likelihood as Energy 

•  Log-likelihood (apart from an additive constant): 

     where λi = log{p(yi|1}/p(yi|0)} 

•  Bayesian maximum a priori (MAP) image estimate: 

 x* = arg maxx L(x|y) = arg minx [-L(x|y)] 
–  Pixel-wise simulated annealing, ICM do not approach the 

MAP even after hundreds or thousands of iterations… 

€ 

L(x | y)∝ lnP(y | x)P(x)

= λixi + 1
2i=1

n
∑ β ij xix j + (1− xi)(1− x j )[ ]j=1

n
∑i=1

n
∑
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          Noiseless image x                                       Noisy image y 
          MRF prior: βij = β  

       MAP:               Stochastic        ICM Iterated               MAP:              Stochastic          ICM Iterated 
     βij = 0.3            annealing     conditional modes       βij = 0.7             annealing    conditional modes 

                                               MAP:              Stochastic          ICM Iterated  
                                              βij = 1.1            annealing       conditional modes 

COMPSCI 773 30 

D.M.Greig, B.T.Porteous, A.H.Seheult: Exact Maximum A Posteriori Estimation for Binary Images.
 Journal of the Royal Statistical Society, Ser. B, Vol.51 (2), pp.271-279, 1989 
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Network Representation 

T-links (terminal links):  

•  Directed edge (s,i) with the 
capacity csi = λi  if λi > 0 

•  Directed edge (i,t) with the 
capacity cit = -λi if λi ≤ 0 

N-links (neighbouring links): 

•  Undirected edge (i,j) 
between two internal nodes – 
neighbours i and j with the 
capacity cij = βij  > 0 

1         2         3 
j 

n 

source s  

sink t 

pixels 
1,…,n 

i 
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Network Representation 

1         2         3 

j 

n 

source s  

sink t  

pixels 
1,…,n 

i 

λi = log{p(yi|1}/p(yi|0)}:   
       λi  > 0 for yi = 1 
       and  
       λi  < 0 for yi = 0
Example: 

€ 

p(yi xi) =
0.8 yi = xi
0.2 yi ≠ xi

 
 
 

⇒

λi =
log2 4 = 2 yi =1

−log2 4 = −2 yi = 0
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Energy Minimisation via Graph Cut 

B = {s} ∪ {i: xi = 1} and  

W = {i: xi = 0} ∪ {t} – a  2-set 
partition of the nodes for any 
binary image x 

Cut - a set of edges (i,j) such 
that i ∈ B and j ∈ W 

Capacity of the cut: 1        2        3 

i 

n 

source s 

sink t  

pixels 
1,…,n 

j 

  

€ 

C(x) = cij
( i, j )∈E:
i∈B; j∈W

∑ xi = 1  
yi = 0 

xi = 0  
yi = 1 

xi = 1  
xj = 0 
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Energy Minimisation via Graph Cut 

•  Capacity of the cut: 

–  Differs from [–L(x|y)] by a term that is independent of x 
•  Maximizing this likelihood is equivalent to minimizing 

the capacity of the cut, i.e. to finding the minimum cut, 
or the maximum flow through the network 

€ 

C(x) = ximax{0,−λi}
i=1

n

∑ + (1− xi)max{0,λi}
i=1

n

∑

+ 1
2 β ij xi − x j( )

2

j=1

n

∑
i=1

n

∑
xi = 1  
yi = 0 

xi = 0  
yi = 1 

xi = 1  
xj = 0 
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Energy Minimisation via Graph Cut 

•  [Greig e. a., 1989] Accelerated Ford-Fulkerson algorithm:  
–  Partitioning the image into 2K × 2K connected sub-images 
–  Calculate the MAP estimate for each sub-image separately 
–  Amalgamate the sub-images to form a set of 2K-1 × 2K-1 

larger sub-images 
–  Form the MAP estimate for each of them 
–  Continue until the MAP estimate of the complete image 

•  Simulated annealing: does not necessarily produce a good 
approximation of an MAP estimate and becomes bogged down 
by local maxima resulting in under-smooth solutions 
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Energies Minimised via Graph Cuts 

Theorem [Friedman,Drineas,2005; generally, it is a folklore of the 

combinatorial optimisation: Papadimitriou, Steiglitz, 1986]:  

Let E(x1,…,xn) = Σi,j βij xixj + L  

    where xi ∈{0,1} and L is linear in xi plus constants  
(i.e. L = Σiλixi + c)         

Then E can be minimised via graph cut techniques if and 
only if βij ≤ 0 for all i, j ∈{1,2,…, n}  
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Energies Minimised via Graph Cuts 

Proof of “if” part (“only if”: see [Papadimitriou, Steiglitz, 1986]): 
•  Energy is rewritten as E = Σi,j=1,…,nαijxi(1- xj) + Λ

where αij = -βij and the linear term Λ is altered  

•  Minimal E over the binary xi ⇒ a min cut in a complete 
graph with n nodes and edge weights wij = αij 
–  The cut separates the nodes with xi= 0 from those with xj= 1 

(because only xi = 1 and xj = 0 adds αij to the energy) 

Polynomial-time min cut if and only if wi j ≥ 0 ⇒ βij ≤ 0 
–  For the altered linear term Λ = Σiγixi + σ   

•  An edge (s,i) with the weight wsi=γi if γi ≥ 0  and an edge (i,t) with 
wit = |γi| if γi < 0; therefore, all weights are non-negative 
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Energies Minimised via Graph Cuts 

Energy terms depending on signals and pairs of signals (class F2): 
E(x1,…,xn) = Σi Ei(xi) + Σi,j Eij(xi, xj); xi ∈ {0,1} 

€ 

Eij (xi,x j ) ≡ Eij
00(1− xi)(1− x j ) + Eij

01(1− xi)x j

+Eij
10xi(1− x j ) + Eij

11xix j

E(x1,...,xn ) = Eij
00 + Eij

11 − Eij
01 − Eij

10( )xix ji, j∑ + L

444444 3444444 21
condition regularity

jiEEEE ijijijij ,        0     10011100 ∀≤−−+

Such energy function can be minimised via graph cuts if and only if: 
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Large Moves via Min-Cut/Max-Flow 

[Boykov,Veksler,Zabih,2001] Approximate energy minimisation by 
replacing pixel-wise optimising moves with large moves 
–  Convergence to a solution being provably within a known 

factor of the global energy minimum 
–  Energy function minimised w.r.t. a labelling x = (x1,…,xn): 

where L = {1, …, L} - an arbitrary finite set of labels 
           N ⊂ {1, …, n}2 - a set of neighbouring (interacting) pixel pairs 
           Vi: L → R - a pixel-wise potential function (energy of labels) 
           Vij: L2 → R - a pair-wise potential function (energy of label pairs)  

  

€ 

E(x1,...,xn ) = Vi(xi) + Vij (xi,x j )
( i, j )∈N

∑
i=1

n

∑ ;  xi ∈ L;  i =1,...,n
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Conditions and Optimal Moves 

•  Arbitrary pixel-wise energies Vi 

•  Semimetric or metric pair-wise energies Vij 
–  Semimetric: ∀α,β∈L Vij(α,α) = 0; Vij(α,β) = Vij(β,α) ≥ 0 

–  Metric: also the triangle inequality Vij(α,β) ≤ Vij(α,γ) + Vij(γ,β)

•  Each labelling x partitions the pixel set R = {1, …, n} into L 
subsets Rλ = (i | i ∈ R; xi = λ ∈ L}
–  Conditionally optimal large moves change each partition P = {Rλ: λ ∈ L} 

to approach a certain vicinity of the global minimum of the partition energy

•  α-β-swap (with the semimetric Vij) 

•  α-expansion (with the metric Vij) 
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α,β-swap and α -expansion

α,β - swap for an arbitrary pair of labels α, β ∈ L is a move from a 
partition P for a current labelling x to a new partition P′ for a new 
labelling x′ such that Rλ=R′λ for any label λ ≠ α, β
–  Only the labels α and β in their current region Rαβ = Rα∪Rβ 

whereas all other labels in R ≠ Rαβ remain fixed.  
–  In the general case, after an α-β-swap some pixels change their 

labels from α to β and some others -- from β to α. 

α - expansion of an arbitrary label α is a move from a partition P 
for a current labelling x to a new labelling x′ such that Rα ⊂ R′α 
and R\R′α = ∪λ∈L;λ≠α R′λ ⊂ R\Rα = ∪λ∈L;λ≠α Rλ  
–  After this move any subset of pixels can change their labels to α  
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Energy Minimisation Algorithms 

Swap algorithm for semimetric interaction potentials 

1.   Initialization: An arbitrary labelling x 
2.   Iterative minimization: For every pair of labels (α,β) ∈  L2 

taken in a fixed or random order: 
2.1    Find  x* = arg minone α-β-swap of x E(x) with a min-cut/max-flow technique 

2.2    If E(x*) < E(x), then accept the lower-energy labelling: x ← x*  
3.   Stopping rule:  

If a new labelling has been accepted for at least one pair of labels at Step 
2.1, continue the minimisation process by returning to Step 2 

Otherwise terminate the process and output the final labelling x 
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Energy Minimisation Algorithms 

Expansion algorithm for metric interaction potentials 

1.   Initialization: An arbitrary labelling x 
2.   Iterative minimization: For every label α ∈  L taken in a fixed 

or random order: 
2.1 Find x*= arg minone α-expansion of x E(x) with a min-cut/max-flow technique 

2.2 If E(x*) < E(x), then accept the lower-energy labelling: x ← x*  

3.   Stopping rule:  
If a new labelling has been accepted for at least one label at Step 2.1, 

continue the minimisation process by returning to Step 2 

Otherwise terminate the process and output the final labelling x 
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Optimal Move: Swap Algorithm 

Graph Gαβ=[Nαβ;Eαβ] for a set of 
pixels with the labels α and β
–  Nαβ  - two terminals, α and β, 

and all pixels in Rαβ 
–  Each pixel i ∈ Rαβ is connected 

to the terminals by edges (t-links) 
tα,i and tβ,i : 

–  Each neighbour pair (i,j)∈Rαβ is 
connected by an edge (n-link) ei,j: 

    

€ 

weight tα ,i ⇐Vi(α) + Vij (α,x j )
j∈Ni ; j∉Rαβ

∑

weight tβ ,i ⇐Vi(β) + Vij (β,x j )
j∈Ni ; j∉Rαβ

∑

    

€ 

weight ei, j ⇐Vij (α,β);(i, j)∈ Eαβ ∩ Rαβ
2

Ni – the set of neighbours of the node i  
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Optimal Move: Swap Algorithm 

A cut C on Gαβ must contain exactly one t-link for any pixel i ∈ Rαβ  
Otherwise: either there would be a path between the terminals if both the 

links are included, or  

a proper subset of C would become a cut if both the links are excluded 

Therefore, any cut C provides a natural labelling xC:  
every pixel i ∈ Rαβ is labelled with α or β if the cut C separates i from the  

terminal α or β, respectively, and the other pixels keep their initial labels: 

    

€ 

∀i∈R   xC,i =

α if i ∈ Rαβ   and   tα,i ∈ C 

β if i ∈ Rαβ   and   tβ ,i ∈ C

xi if i ∉ Rαβ
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Optimal Move: Swap Algorithm 

Each labelling xC corresponding 
to a cut C on Gαβ is one α-β-
swap from the initial x 
–  Any n-link ei,j is included in a 

cut C only if the pixels i and j 
are linked to different terminals 
under the cut 

Theorem (BVZ,2001): The capacity 
c(C) of the cut C is the energy 
function E(xC) plus a constant 

Corollary (BVZ,2001): The lowest energy labelling within a single α-β-swap
 move from a current labelling x corresponds to the minimum cut labelling 
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Optimal Move: Expansion Algorithm 

Graph Gα=[Nα;Eα] for a set of 
pixels with the labels α and α
–  Nα  - two terminals, α and α, all 

pixels i ∈ R, and auxiliary 
nodes ai,j for each pair (i,j) of 
the nodes with the labels xi≠xj  

–  Edge weights: 

R={i,j,k,l,m}  Rα={i}  Rβ={j,k}  Rγ={l,m} 



Minimum Cut / Maximum Flow 

AP Georgy Gimel'farb 9 

COMPSCI 773 48 

Optimal Move: Expansion Algorithm 

Any cut C on Gα must include exactly one t-link for any i ∈ R 

This provides a natural labelling: 
An n-link ei,j is in C if i, j ∈ R are  
   connected to different terminals 
The edge triplet Ei,j for i, j ∈ R  
   such that xi≠xj has the unique 
   minimum cut due to the metric 
   properties of the potentials: 
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Optimality of Large Moves 

•  No proven optimality properties for the swap move algorithm 

•  Local minimum within a fixed factor of the global minimum for the 
expansion move algorithm 

•  Theorem[Boykov,Veksler,Zabih,2001]:  

          Let x* and x° be the labellings for a local energy when the 
expansion moves are allowed and the global energy minimum, 
respectively. Then E(x*) ≤ 2γE(x°) where 
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Pictures from: http://bj.middlebury.edu/~schar/stereo/web/ 

Stereo pair True DM 

Graph cut stereo 

Disparity 
map (DM) 

Dynamic programming stereo SSD stereo (window 21 x 21) 

Signed  
errors 


