
Minimum Cut / Maximum Flow

AP Georgy Gimel'farb 1

Min Cut / Max Flow Energy
Minimisation

COMPSCI 773 S1 T
VISION GUIDED CONTROL

A/P Georgy Gimel’farb

COMPSCI 773 1

Dissimilarity Minimisation

•  3-D surface by minimising energy (dissimilarity) of stereo images:
–  Combinatorial optimisation on graphs specifying relationships

between neighbouring pairs of disparities and image signals

–  Generally, an NP-hard problem (the exponential complexity)
•  Energy (dissimilarity) accumulates weights of nodes and edges

–  Approximate iterative polynomial-time solution
•  Maximum flow / minimum cut algorithms applied to special graphs

•  Solution is provably within a fixed factor of the global minimum

•  General maximum flow problem for a network, or a directed graph
(digraph) G with two special nodes: a source, s, and a sink, t

COMPSCI 773 2

Basic Notation

•  G=[N,E] - a digraph (network) with sets of nodes N and edges E:

N = {xa, xb, xc, …}; E = {(xa, xb),(xa, xc), …} ⊆ N2
–  Chain: a sequence x1,…,xn such that (xi, xi+1) ∈ E

–  Path: a sequence x1,…,xn such that either (xi, xi+1) ∈ E or (xi+1 , xi) ∈ E
–  Set of the subsequent nodes “after x”: A(x) = {y ∈ N | (x, y) ∈ E}
–  Set of the preceding nodes “before x”: B(x) = {y ∈ N | (y, x) ∈ E}

xa

xe
xb

xc

xi

xf

xd xg

x1
xk xu

xj

xm xo

xl xp
xn

xr

COMPSCI 773 3

Flows in Networks

•  c(x,y) ≥ 0 – a non-negative capacity of (x,y) ∈ E
c: E → R≥0 = [0,∞) – a capacity function on E

•  s, t – the two distinguished nodes (source, sink)
–  Edges then can be considered as “water pipes”…

xa

xb

xc

xd

c(xb,xa) = 5.0

c(xa,xb) = 10.3

c(xb,xd) = 7.5

9.7

2.7
1.2 7.1

COMPSCI 773 4

Flows in Networks

Static flow of value v from s to t in [N; E] is a function
f: E →R≥0 satisfying linear conditions:

•  The flow through every edge does not exceed the edge capacity

•  Every node except s and t has equal inflow and outflow

COMPSCI 773 5

 Flow of Value 3

a

x

b

f (s,a)=4 f (a,b)=1

f (b,t)=1

s

t
Assumption:
c(i,j) ≥ f (i,j)

f (a,t)=1 f (a,x)=2

f (s,b)=4

f (t,s)=1

f (x,s)=1

f (b,x)=1

f (x,t)=2

N ={a, b, s, t, x}

E ={(a,b), (a,t), (a,x),
 (b,t), (b,x),
 (s,a), (s,b), (t,s),
 (x,s), (x,t)}

Minimum Cut / Maximum Flow

AP Georgy Gimel'farb 2

COMPSCI 773 6

Static Max Flow Problem

•  Maximise the flow v subject to the flow constraints:

–  A cut C of the network [N; E] is a set of edges such that their
removal separates the source s from the sink t

•  The cut breaks every chain of nodes from the source to the sink

–  The capacity of the cut C is the total capacity of its edges, i.e.
the sum of their capacities

€

maxv :∀(x,y)∈E f (x,y) ≤ c(x,y)

f (x,y) − f (y,x) =

v x = s
0 x ≠ s,t; x ∈ N

−v x = t

 y∈B(x)

∑
y∈A (x)
∑

COMPSCI 773 7

Cuts and Capacities

Example: the set of edges C = {(s,y),(x,y),(x,t)} is a cut
separating s and t

s t

x

y

c = 1, f = 1

3,2
1,0

c = 3, f = 2

1,1

1,1

Capacity of the cut c(C) =
 c(s,y) + c(x,y) + c(x,t) =
 3 + 1 + 3 = 7

Flow through the cut f (C) =
 f (s,y) + f (x,y) + f (x,t) =
 2 + 0 + 2 = 4

COMPSCI 773 8

Flow vs. Capacity of the Cut

Lemma 1 [Ford,Fulkerson;1956]:
Let a flow f from the source s to the sink t in a network [N;E]

have value v
Let C be a cut that separates s from t
Then the difference between the forward flow f s-t(C) from s to t

through C and the reverse flow f t-s(C) from t to s through C

is equal to v and is not greater than the capacity of the cut:

v = f s-t(C) - f t-s(C) ≤ c(C)

COMPSCI 773 9

Meaning of Lemma 1

The equality in Lemma 1:

 the value v of a flow from the source s to the sink t is
equal to the net flow across any cut separating s and t

The inequality in Lemma 1:
 the net flow across any cut separating s and t does not

exceed the capacity of the cut

Thus, the net flow from s to t is bounded by the capacities
of the cuts separating s and t

COMPSCI 773 10

Maximal Flow / Minimum Cut

Max-flow min-cut theorem [Ford,Fulkerson;1956]: For any
network the maximum flow value from s to t is equal to
the minimum cut capacity of all cuts separating s and t

Corollary 1: A flow is maximum if and only if (iff) there is
no flow augmenting path with respect to f
–  A path from s to t is a flow augmenting path w.r.t. a flow f if

f < c on forward edges of the path and f > 0 on reverse
edges of the path

–  Fundamental importance of the corollary: to increase the
value of a flow, improvements are of a very restricted kind!

COMPSCI 773 11

Maximal Flow / Minimum Cut

–  An edge (x,y) is saturated w.r.t. a flow f if f(x,y) = c(x,y)
and is flowless w.r.t. f if f(x,y) = 0

Corollary 2: A cut C is minimum iff every maximum flow f
saturates all forward edges of the cut whereas all
reverse edges of the cut are flowless w.r.t. f

•  Meaning of Corollary 2: there are no flow augmenting paths
w.r.t. the maximum flow

•  The case of many sources and sinks with unrestricted flows is
equivalent to a single source, single sink case

s s1 s2

sk

sK

t
t1

t2

tj tJ

Minimum Cut / Maximum Flow

AP Georgy Gimel'farb 3

COMPSCI 773 12

Maximal Flow / Minimum Cut

–  Union (∪) of two cuts:
the set of edges between the union of all the source-side
nodes from each cut and all the other nodes in N

–  Intersection (∩) of two cuts:
the set of edges between the intersection of the source-side
nodes in these cuts and all the other nodes in N

Corollary 3: If C1 and C2 are minimum cuts, then the
union C1 ∪ C2 and intersection C1 ∩ C2 are also
minimum cuts

s t s t s t
C1 ∪ C2 C1 ∩ C2 C1

C2

COMPSCI 773 13

Ford–Fulkerson Labelling Algorithm

•  Proof of the max-flow / min-cut theorem provides, under mild
restrictions on the capacity function, a simple efficient algorithm
for constructing a maximal flow and minimal cut in a network

•  Initialization: the zero flow

•  Sequence of “labellings” (Routine A), each of which
–  either results in a flow of higher value (Routine B) or

–  terminates with the conclusion that the present flow is
maximal (to ensure termination: integer capacities!)

Informal Algorithm Description

•  Main idea of labelling (routine A): use a system of labels to
 find paths between the source and the sink with unsaturated edges

•  Labelling begins from the source (getting the label 0)

•  Let a node xi be already labelled

1.  A subsequent node xj is not labelled if the edge (xi, xj) is saturated;
 otherwise (f (xi, xj) < c(xi, xj)) it is labelled with +i, that is, xj

+i

2.  A preceding node xj is not labelled if the flow f (xj, xi) = 0;
 otherwise (f (xj, xi) > 0) it is labelled with -i, that is, xj

-i

•  Therefore, the network flow can be increased by increasing flow
 through edges ending with (+)-nodes and decreasing it through
 edges ending in (-)-nodes

COMPSCI 773 14

Informal Algorithm Description

 … … …

•  If the sink is labelled, then there exists a flow augmenting path
 between the source and the sink such that all its nodes are
 labelled with the indices of their preceding nodes
–  Because such a path contains only unsaturated edges, all the flows via its

 edges can be changed by a value

–  The flow via an edge is increased by h if the edge is oriented from s to t
 (from the source to the sink) and decreased by h otherwise

COMPSCI 773 15

€

s0

€

xa
+0

€

xi

€

t +r

€

x j
−i

€

f (s0,xa) < c(s0,xa)

€

f (x j ,xi) > 0

€

xα

€

xβ
+α

€

xr

€

f (xα ,xβ) < c(xα ,xβ)

€

f (xr,t) < c(xr,t)

€

h = min
(xq ,xu

+q)∈path
(xk

−m ,xm)∈path

c(xq,xu
+q) − f (xq ,xu

+q), f (xk
−m ,xm){ } > 0

COMPSCI 773 16

Ford–Fulkerson Labelling Algorithm

•  Given an integral flow f, labels are assigned to nodes of
the network
–  Nodes can be unlabelled (UN), labelled unscanned (LUN),

and labelled scanned (LSN)
–  A label has one of the forms (x+,ε) or (x-,ε), where x ∈ N

and ε is a positive integer or infinity (∞)

Routine A: Labelling
–  Initially all nodes are unlabelled (UN) :
 The source node is LUN (-, ε(s) = ∞)
 Other nodes are UN

COMPSCI 773 17

Ford–Fulkerson Labelling Algorithm

Routine A: Labelling (cont.)
–  For every LUN x having the label (z±,ε(x)):

(1) Convert all UN y “after x” (i.e. in A(x)) such that
f(x,y) < c(x,y) into LUN with the labels
(x+,ε(y) = min[ε(x), c(x,y) - f(x,y)]), and

(2) Convert all UN y “before x” (i.e. in B(x)) such that
f(y,x) > 0 into LUN with the labels
(x-,ε(y) = min[ε(x), f(y,x)])

(3) Such x is now LSN
–  If the sink t is LUN, go to Routine B; otherwise (t is UN) - stop

Minimum Cut / Maximum Flow

AP Georgy Gimel'farb 4

COMPSCI 773 18

Ford–Fulkerson Labelling Algorithm

Routine B: Flow change (the sink has been labelled (y±,ε(t))):
–  If t is labelled (y+,ε(t)), replace f(y,t) with f(y,t) + ε(t)
–  If t is labelled (y-,ε(t)), replace f(t,y) with f(t,y) - ε(t)
–  In either case,

 if node y is labelled (x+,ε(t)), replace f(x,y) with f(x,y) + ε(t)
 if node y is labelled (x-,ε(y)), replace f(y,x) with f(y,x) - ε(t)

and go on to node x
–  Stop the flow change when the source s is reached, discard

the old labels, and go back to Routine A

COMPSCI 773 19

Ford–Fulkerson Labelling Algorithm

Labelling searches for a flow augmenting path from s to t :
If Routine A ends and the sink is not labelled, the flow is maximum

and the set of edges from UN to L*N nodes is a minimum cut

•  Example:

s t

x

y

1,1

3,0
1,1

3,0

1,1

1,0 (-,∞)

Routine A for s:
 Node x: f (s,x) = c(s,x) = 1
 Node y: f(s,y) = 0 < c(s,y) = 3 Step 1

Step 2
(s+,min{∞, 3 - 0} = 3)

(s+,3)
min{ε(s), c(s,y) - f(s,y)}

COMPSCI 773 20

Ford–Fulkerson Labelling Algorithm

s t

x

y

1,1

3,0
1,1

3,0

1,1

1,0 (-,∞)

Step 3

(s+,3)

s t

x

y

1,1

3,0
1,1

3,0

1,1

1,0 (-,∞)

(s+,3)

Node x: f(y,x) = 0 < c(y,x) = 1

(y+,min{3,1-0}=1)
min{ε(y), c(y,x) - f(y,x)}

(y+,1)

Node x: f(x,y) = c(x,y) = 1
Node t: f(y,t) = c(y,t) = 1
 f(x,t) = 0 < c(x,t) = 3

Step 4

(x+,1)

COMPSCI 773 21

Ford–Fulkerson Labelling Algorithm

s t

x

y

1,1

3,0 → 1
1,1

3,0 → 1

1,1

1,0 → 1

(-,∞)

(s+,3)

(x+,1)

(y+,1)

A flow augmenting path is located by backtracking from the
sink t according to directions given in labels along which a
flow change of ε(t) = 1 can be made

s t

x

y

1,1

1,1

1,1

1,1
3,1

3,1

New flow value 2

COMPSCI 773 22

Ford–Fulkerson Labelling Algorithm

s t

x

y

1,1

3,1 → 2
1,1

3,1 → 2

1,1

1,1 → 0

(-,∞)

(s+,2)

(x+,1)

(y-,1)

New flow value 3 New labelling:
 non-sink stop

s t

x

y

1,1

1,0

1,1

1,1
3,2

3,2
(-,∞)

(s+,1)

COMPSCI 773 23

Polynomial-Time Max-Flow

Maximum flow in the n-node , m-edge network (graph):

•  Ford–Fulkerson (finding augmenting paths;1956): O(nm2)
•  Dinic (shortest augmenting paths in 1 step; 1970): O(n2m)

–  Graphs: dense – O(n3); sparse – O(nm log n)

•  Goldberg–Tarjan (pushing a pre-flow; 1985):
–  Karzanov’s pre-flow: the flow in and out of nodes may not be

equal (the difference at node j is called the excess at j)
–  Aggressive-passive mode: push as much as possible into

the graph, then trim the excess to 0; no flow until the end €

O nm log n2 m()()

Minimum Cut / Maximum Flow

AP Georgy Gimel'farb 5

COMPSCI 773 24

Goldberg–Tarjan Push-Label Algorithm

Relabelling eventually makes 0 the excess at each node
•  Excess e(x) at x is

–  The node x is active if e(x) > 0
–  The source and sink are never active

•  Residual capacity of an edge (x,y):
 r(x,y) = c(x,y) - f(x,y) + f(y, x)
–  Residual network (graph): RG = {(x,y) : r(x,y) > 0}

•  Distance function d:N→R for the nodes:
(1) d(t) = 0;
(2) if (x,y) ∈ E and c(x,y) > 0 then d(x) ≤ d(y) + 1

€

e(x) = f (y,x) −
y∈B (x)∑ f (x,y)

y∈A (x)∑

COMPSCI 773 25

Goldberg–Tarjan Push-Label Algorithm

•  Initialisation:
–  d(s) = |N| (the number of nodes in a network)
–  d(t) = 0
–  d(x) = 1 for all x ≠ s,t
–  f(s,x) = c(s,x) for every edge (s,x) ∈ E

•  Processing while an active node (e(x) > 0) exists:
–  Select an active node x and

–  Try to push more pre-flow towards the sink

COMPSCI 773 26

Goldberg–Tarjan Push-Label Algorithm

•  Processing (cont.):
If (x,y) ∈ E, d(x) = d(y) + 1, r(x,y) > 0 or

(y,x) ∈ E, d(x) = d(y) + 1, r(x,y) > 1, then

 push min{e(x), r(x,y)} from x to y and change f accordingly
(pushing as much as the excess at the node and the residual
capacity of or from the edge (x,y) allows)

If nothing can be pushed from x, relabel x by replacing d(x) with
min{ d(y) + 1 : (x,y) ∈ A(x) and r(x,y) > 0 }

•  Once processing is finished, the pre-flow is a max flow

COMPSCI 773 27

Goldberg–Tarjan Push-Label Algorithm

s t

x

y

4 0

135

124

4,43

6,6

2,0101

4,04

5,05

Iter. x y s,x s,y y,x x,t y,t Active

1 1 1 4 6 0 0 0 x,y
2 1 1 4 6 0 4 5 y
3 1 2 4 6 0 4 5 y
4 1 2 4 6 1 4 5 x
5 3 2 4 6 1 4 5 x
6 3 2 4 6 0 4 5 y
7 3 4 4 6 0 4 5 y
8 3 4 4 6 1 4 5 x
9 5 4 4 6 1 4 5 x

10 5 4 3 6 1 4 5
capacity

COMPSCI 773 28

Energy Minimization via Graph Cuts

•  [D. M. Greig e.a., 1989]: Denoising binary images
Noisy signals y=(yi: i = 1,…,n) are conditionally independent,

given a noiseless image x=(xi: i = 1,…,n):

Prior image model: a 2nd-order Markov random field (MRF):

where βii = 0; βij = βji ≥ 0 (neighbours if the strict inequality):
i.e. the model of more probable identical neighbours (xi = xj)

€

P(y | x) = p(yi | xi) ≡ p(yi | 0)
1−xi p(yi |1)

xi
i=1

n
∏

i=1

n
∏

= p(y | 0) p(yi |1)
p(yi | 0)

i=1

n
∏

i=1

n
∏

xi

€

P(x)∝exp 1
2 βij xix j + (1− xi)(1− x j)[]j=1

n
∑i=1

n
∑

D.M.Greig, B.T.Porteous, A.H.Seheult: Exact Maximum A Posteriori Estimation for Binary Images.
 Journal of the Royal Statistical Society, Ser. B, Vol.51 (2), pp.271-279, 1989

COMPSCI 773 29

Negative Likelihood as Energy

•  Log-likelihood (apart from an additive constant):

 where λi = log{p(yi|1}/p(yi|0)}

•  Bayesian maximum a priori (MAP) image estimate:

 x* = arg maxx L(x|y) = arg minx [-L(x|y)]
–  Pixel-wise simulated annealing, ICM do not approach the

MAP even after hundreds or thousands of iterations…

€

L(x | y)∝ lnP(y | x)P(x)

= λixi + 1
2i=1

n
∑ β ij xix j + (1− xi)(1− x j)[]j=1

n
∑i=1

n
∑

Minimum Cut / Maximum Flow

AP Georgy Gimel'farb 6

 Noiseless image x Noisy image y
 MRF prior: βij = β

 MAP: Stochastic ICM Iterated MAP: Stochastic ICM Iterated
 βij = 0.3 annealing conditional modes βij = 0.7 annealing conditional modes

   MAP: Stochastic ICM Iterated
   βij = 1.1 annealing conditional modes

COMPSCI 773 30

D.M.Greig, B.T.Porteous, A.H.Seheult: Exact Maximum A Posteriori Estimation for Binary Images.
 Journal of the Royal Statistical Society, Ser. B, Vol.51 (2), pp.271-279, 1989

COMPSCI 773 31

Network Representation

T-links (terminal links):

•  Directed edge (s,i) with the
capacity csi = λi if λi > 0

•  Directed edge (i,t) with the
capacity cit = -λi if λi ≤ 0

N-links (neighbouring links):

•  Undirected edge (i,j)
between two internal nodes –
neighbours i and j with the
capacity cij = βij > 0

1 2 3
j

n

source s

sink t

pixels
1,…,n

i

COMPSCI 773 32

Network Representation

1 2 3

j

n

source s

sink t

pixels
1,…,n

i

λi = log{p(yi|1}/p(yi|0)}:
 λi > 0 for yi = 1
 and
 λi < 0 for yi = 0
Example:

€

p(yi xi) =
0.8 yi = xi
0.2 yi ≠ xi

⇒

λi =
log2 4 = 2 yi =1

−log2 4 = −2 yi = 0

COMPSCI 773 33

Energy Minimisation via Graph Cut

B = {s} ∪ {i: xi = 1} and

W = {i: xi = 0} ∪ {t} – a 2-set
partition of the nodes for any
binary image x

Cut - a set of edges (i,j) such
that i ∈ B and j ∈ W

Capacity of the cut: 1 2 3

i

n

source s

sink t

pixels
1,…,n

j

€

C(x) = cij
(i, j)∈E:
i∈B; j∈W

∑ xi = 1
yi = 0

xi = 0
yi = 1

xi = 1
xj = 0

COMPSCI 773 34

Energy Minimisation via Graph Cut

•  Capacity of the cut:

–  Differs from [–L(x|y)] by a term that is independent of x
•  Maximizing this likelihood is equivalent to minimizing

the capacity of the cut, i.e. to finding the minimum cut,
or the maximum flow through the network

€

C(x) = ximax{0,−λi}
i=1

n

∑ + (1− xi)max{0,λi}
i=1

n

∑

+ 1
2 β ij xi − x j()

2

j=1

n

∑
i=1

n

∑
xi = 1
yi = 0

xi = 0
yi = 1

xi = 1
xj = 0

COMPSCI 773 35

Energy Minimisation via Graph Cut

•  [Greig e. a., 1989] Accelerated Ford-Fulkerson algorithm:
–  Partitioning the image into 2K × 2K connected sub-images
–  Calculate the MAP estimate for each sub-image separately
–  Amalgamate the sub-images to form a set of 2K-1 × 2K-1

larger sub-images
–  Form the MAP estimate for each of them
–  Continue until the MAP estimate of the complete image

•  Simulated annealing: does not necessarily produce a good
approximation of an MAP estimate and becomes bogged down
by local maxima resulting in under-smooth solutions

Minimum Cut / Maximum Flow

AP Georgy Gimel'farb 7

COMPSCI 773 36

Energies Minimised via Graph Cuts

Theorem [Friedman,Drineas,2005; generally, it is a folklore of the

combinatorial optimisation: Papadimitriou, Steiglitz, 1986]:

Let E(x1,…,xn) = Σi,j βij xixj + L

 where xi ∈{0,1} and L is linear in xi plus constants
(i.e. L = Σiλixi + c)

Then E can be minimised via graph cut techniques if and
only if βij ≤ 0 for all i, j ∈{1,2,…, n}

COMPSCI 773 37

Energies Minimised via Graph Cuts

Proof of “if” part (“only if”: see [Papadimitriou, Steiglitz, 1986]):
•  Energy is rewritten as E = Σi,j=1,…,nαijxi(1- xj) + Λ

where αij = -βij and the linear term Λ is altered

•  Minimal E over the binary xi ⇒ a min cut in a complete
graph with n nodes and edge weights wij = αij
–  The cut separates the nodes with xi= 0 from those with xj= 1

(because only xi = 1 and xj = 0 adds αij to the energy)

Polynomial-time min cut if and only if wi j ≥ 0 ⇒ βij ≤ 0
–  For the altered linear term Λ = Σiγixi + σ

•  An edge (s,i) with the weight wsi=γi if γi ≥ 0 and an edge (i,t) with
wit = |γi| if γi < 0; therefore, all weights are non-negative

COMPSCI 773 38

Energies Minimised via Graph Cuts

Energy terms depending on signals and pairs of signals (class F2):
E(x1,…,xn) = Σi Ei(xi) + Σi,j Eij(xi, xj); xi ∈ {0,1}

€

Eij (xi,x j) ≡ Eij
00(1− xi)(1− x j) + Eij

01(1− xi)x j

+Eij
10xi(1− x j) + Eij

11xix j

E(x1,...,xn) = Eij
00 + Eij

11 − Eij
01 − Eij

10()xix ji, j∑ + L

444444 3444444 21
condition regularity

jiEEEE ijijijij , 0 10011100 ∀≤−−+

Such energy function can be minimised via graph cuts if and only if:

COMPSCI 773 39

Large Moves via Min-Cut/Max-Flow

[Boykov,Veksler,Zabih,2001] Approximate energy minimisation by
replacing pixel-wise optimising moves with large moves
–  Convergence to a solution being provably within a known

factor of the global energy minimum
–  Energy function minimised w.r.t. a labelling x = (x1,…,xn):

where L = {1, …, L} - an arbitrary finite set of labels
 N ⊂ {1, …, n}2 - a set of neighbouring (interacting) pixel pairs
 Vi: L → R - a pixel-wise potential function (energy of labels)
 Vij: L2 → R - a pair-wise potential function (energy of label pairs)

€

E(x1,...,xn) = Vi(xi) + Vij (xi,x j)
(i, j)∈N

∑
i=1

n

∑ ; xi ∈ L; i =1,...,n

COMPSCI 773 40

Conditions and Optimal Moves

•  Arbitrary pixel-wise energies Vi

•  Semimetric or metric pair-wise energies Vij
–  Semimetric: ∀α,β∈L Vij(α,α) = 0; Vij(α,β) = Vij(β,α) ≥ 0

–  Metric: also the triangle inequality Vij(α,β) ≤ Vij(α,γ) + Vij(γ,β)

•  Each labelling x partitions the pixel set R = {1, …, n} into L
subsets Rλ = (i | i ∈ R; xi = λ ∈ L}
–  Conditionally optimal large moves change each partition P = {Rλ: λ ∈ L}

to approach a certain vicinity of the global minimum of the partition energy

•  α-β-swap (with the semimetric Vij)

•  α-expansion (with the metric Vij)

COMPSCI 773 41

α,β-swap and α -expansion

α,β - swap for an arbitrary pair of labels α, β ∈ L is a move from a
partition P for a current labelling x to a new partition P′ for a new
labelling x′ such that Rλ=R′λ for any label λ ≠ α, β
–  Only the labels α and β in their current region Rαβ = Rα∪Rβ

whereas all other labels in R ≠ Rαβ remain fixed.
–  In the general case, after an α-β-swap some pixels change their

labels from α to β and some others -- from β to α.

α - expansion of an arbitrary label α is a move from a partition P
for a current labelling x to a new labelling x′ such that Rα ⊂ R′α
and R\R′α = ∪λ∈L;λ≠α R′λ ⊂ R\Rα = ∪λ∈L;λ≠α Rλ
–  After this move any subset of pixels can change their labels to α

Minimum Cut / Maximum Flow

AP Georgy Gimel'farb 8

COMPSCI 773 42

Energy Minimisation Algorithms

Swap algorithm for semimetric interaction potentials

1.   Initialization: An arbitrary labelling x
2.   Iterative minimization: For every pair of labels (α,β) ∈ L2

taken in a fixed or random order:
2.1 Find x* = arg minone α-β-swap of x E(x) with a min-cut/max-flow technique

2.2 If E(x*) < E(x), then accept the lower-energy labelling: x ← x*
3.   Stopping rule:

If a new labelling has been accepted for at least one pair of labels at Step
2.1, continue the minimisation process by returning to Step 2

Otherwise terminate the process and output the final labelling x

COMPSCI 773 43

Energy Minimisation Algorithms

Expansion algorithm for metric interaction potentials

1.   Initialization: An arbitrary labelling x
2.   Iterative minimization: For every label α ∈ L taken in a fixed

or random order:
2.1 Find x*= arg minone α-expansion of x E(x) with a min-cut/max-flow technique

2.2 If E(x*) < E(x), then accept the lower-energy labelling: x ← x*

3.   Stopping rule:
If a new labelling has been accepted for at least one label at Step 2.1,

continue the minimisation process by returning to Step 2

Otherwise terminate the process and output the final labelling x

COMPSCI 773 44

Optimal Move: Swap Algorithm

Graph Gαβ=[Nαβ;Eαβ] for a set of
pixels with the labels α and β
–  Nαβ - two terminals, α and β,

and all pixels in Rαβ
–  Each pixel i ∈ Rαβ is connected

to the terminals by edges (t-links)
tα,i and tβ,i :

–  Each neighbour pair (i,j)∈Rαβ is
connected by an edge (n-link) ei,j:

€

weight tα ,i ⇐Vi(α) + Vij (α,x j)
j∈Ni ; j∉Rαβ

∑

weight tβ ,i ⇐Vi(β) + Vij (β,x j)
j∈Ni ; j∉Rαβ

∑

€

weight ei, j ⇐Vij (α,β);(i, j)∈ Eαβ ∩ Rαβ
2

Ni – the set of neighbours of the node i

COMPSCI 773 45

Optimal Move: Swap Algorithm

A cut C on Gαβ must contain exactly one t-link for any pixel i ∈ Rαβ
Otherwise: either there would be a path between the terminals if both the

links are included, or

a proper subset of C would become a cut if both the links are excluded

Therefore, any cut C provides a natural labelling xC:
every pixel i ∈ Rαβ is labelled with α or β if the cut C separates i from the

terminal α or β, respectively, and the other pixels keep their initial labels:

€

∀i∈R xC,i =

α if i ∈ Rαβ and tα,i ∈ C

β if i ∈ Rαβ and tβ ,i ∈ C

xi if i ∉ Rαβ

COMPSCI 773 46

Optimal Move: Swap Algorithm

Each labelling xC corresponding
to a cut C on Gαβ is one α-β-
swap from the initial x
–  Any n-link ei,j is included in a

cut C only if the pixels i and j
are linked to different terminals
under the cut

Theorem (BVZ,2001): The capacity
c(C) of the cut C is the energy
function E(xC) plus a constant

Corollary (BVZ,2001): The lowest energy labelling within a single α-β-swap
 move from a current labelling x corresponds to the minimum cut labelling

COMPSCI 773 47

Optimal Move: Expansion Algorithm

Graph Gα=[Nα;Eα] for a set of
pixels with the labels α and α
–  Nα - two terminals, α and α, all

pixels i ∈ R, and auxiliary
nodes ai,j for each pair (i,j) of
the nodes with the labels xi≠xj

–  Edge weights:

R={i,j,k,l,m} Rα={i} Rβ={j,k} Rγ={l,m}

Minimum Cut / Maximum Flow

AP Georgy Gimel'farb 9

COMPSCI 773 48

Optimal Move: Expansion Algorithm

Any cut C on Gα must include exactly one t-link for any i ∈ R

This provides a natural labelling:
An n-link ei,j is in C if i, j ∈ R are
 connected to different terminals
The edge triplet Ei,j for i, j ∈ R
 such that xi≠xj has the unique
 minimum cut due to the metric
 properties of the potentials:

COMPSCI 773 49

Optimality of Large Moves

•  No proven optimality properties for the swap move algorithm

•  Local minimum within a fixed factor of the global minimum for the
expansion move algorithm

•  Theorem[Boykov,Veksler,Zabih,2001]:

 Let x* and x° be the labellings for a local energy when the
expansion moves are allowed and the global energy minimum,
respectively. Then E(x*) ≤ 2γE(x°) where

COMPSCI 773 50

Pictures from: http://bj.middlebury.edu/~schar/stereo/web/

Stereo pair True DM

Graph cut stereo

Disparity
map (DM)

Dynamic programming stereo SSD stereo (window 21 x 21)

Signed
errors

