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Binocular Viewing 

O1= (Xo,1,Yo,1,Zo,1) and O2= (Xo,1,Yo,1,Zo,1) -optical centres (poles) of 
cameras 

•  Stereo baseline: the line segment O1O2 between the optical centres 
•  o1= (Xo,1,Yo,1,Zo,1) and o2= (Xo,2,Yo,2,Zo,2) - principal points of the images 
•  e1 and e2 - epipolar points in the image planes  

–  The projection of one optical centre (pole) onto the plane of another image 
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Binocular Viewing 

•  Conveniently described in terms of corresponding epipolar lines 

•  Definition:             
The epipolar line through the pixel s in the image plane is a 
trace of the intersecting plane containing the 3D point S and the 
baseline O1O2 (that is, both optical centres O1 and O2) 

–  Let s denote the projection of a 3D point S onto an image 
plane  

–  Any spatial point laying in the plane SO1O2 is projected into 
the corresponding pair of the epipolar lines in the images 

–  For instance, S is projected into the lines e1s1 and e2s2 
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Epipolar Geometry 

•  Definition:              
the epipolar profile of the scene is the 2D profile of the 3D 
scene in the intersecting plane SO1O2 

•  Each epipolar profile of the scene is depicted by the 
corresponding epipolar lines e1s1 and e2s2 in the images 

–  s1, s2 - projections of a 3D point S 
–  e1, e2 - epipoles  

•  e1 – the projection of the optical centre O1 (or pole) onto the second 
image 

•  e2 – the projection of the optical centre O2 (or pole) onto the first 
image 
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Epipolar Geometry 

•  The lines e1s1 and e2s2 are the corresponding epipolar lines 
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Epipolar Geometry 

•  Symmetric epipolar constraint:  
–  For a given point s1 in the plane of the stereo image 1, all the 

possible stereo matches in the plane of another image 2 are on 
the epipolar line passing through the epipole e2 

–  For a given point s2 in the plane of the stereo image 2, all the 
possible stereo matches in the plane of another image 1 are on 
the epipolar line passing through the epipole e1 

–  Corresponding epipolar lines are the intersections of the plane 
SO1O2 with the image planes 
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Epipolar Geometry 
– Parallel epipolar lines:  
   a special case of a so-called horizontal stereo pair  
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Epipolar Geometry 

•  Epipolar relations between the image points: 
–  Two cameras with the projection matrices Pi=[Qi qi]; i=1,2  
–  3D point S relates to the corresponding image points s1 = P1S and s2 = P2S  

•  An example:  
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Epipolar Geometry 

•  The optical centre:  

             Pi[Oi
T

 1]T = QiOi+qi1 = 0 → Oi = -Qi
-1qi 

•  An example: 
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Epipolar Geometry 

•  The epipole ej; j≠i, is given by the relationship: 

     ej = Pj[Oi
T 1]T= Pj [(-Qi

-1qi)T 1]T  

     and is one of the points of each epipolar line: 

•  An example: 
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Epipolar Geometry 

•  Another point Di can be chosen at infinity of the optical ray Oisi, 
that is, Pi[Di

T  0]T= QiDi+qi0 = si → Di = Qi
-1 si 

–  An example:  

–  The image dj of this point in the second image plane is given 
by dj = Pj[Di

T  0]T = QjQi
-1 si 

–  An example: Q1= Q2  means that dj = si       
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Vector Cross Product 

•  Let x = [x1, x2, x3]T and y = [y1, y2, y3]T denote two vectors 

•  The vector cross-product is the vector z = x x y being orthogonal to 
both x and y, i.e. xTz = yTz = 0 

–  An example: if x and y are homogeneous coordinates of two 2D points then a 
2D line through these points has the parameter vector, a = [a1, a2, a3]T, such 
that a = x x y  
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Fundamental Matrix 

•  Epipoles: e1 = P1 [(-Q2
-1q2)T  1]T     e2 = P2 [(-Q1

-1q1)T  1]T  

•  Image points at infinity of the optical ray: 

                  d1 = Q1Q2
-1 s2                             d2 = Q2Q1

-1 s1  
•  Given the two points e1 and d1 (e2 and d2), the epipolar line in the 

image plane 1 (2) in homogeneous coordinates is given by the 
vector cross product :  e1 x d1 (e2 x d2) 

•  It follows that the cross products e1 x d1 and e2 x d2 can be written 
as s2

TF and Fs1 , respectively 

•   F is a 3 x 3 fundamental matrix 
•  Any pixel s1 (s2) on the epipolar line of s2 (s1) satisfies the Longuet-

Higgins equation: s2
TF s1 = 0 
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Fundamental Matrix 

•  The parameters of the epipolar line of s1 are given by the vector 
s2

TF as well as the parameters of the epipolar line of s2 - by the 
vector Fs1 
–  Let homogeneous coordinate vectors sk,j=[xk,j yk,j 1]T; j =1,2 denote the 

k-th pair of corresponding points in a stereo pair of images  
–  The indices j =1 and 2 represent the left and right image of the 

stereo pair, respectively 
•  Meaning of the fundamental matrix relationship: sk,2

TF sk,1 = 0  
–  Any point sk,2 of the right image specifies in the left image an epipolar line 

which the corresponding point  sk,1 lies on; the line parameters are sk,2
TF 

–  Alternatively, a point sk,1 specifies in the right image the parameters Fsk,1 
of the corresponding epipolar line which the point sk,2 lies on   
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Fundamental Matrix 

COMPSCI 773 S1T 

•  Parameters of the epipolar lines are represented by the coordinates 
of the epipoles e1=[xe,1 ye,1]T and e2=[xe,2 ye,2]T:  
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Fundamental Matrix 

COMPSCI 773 S1T 

•  The fundamental matrix depends on four parameters  
                               a = [a1, a2, a4, a5]T  
     and four coordinates  
                               e = [xe,1, ye,1, xe,2, ye,2]T  
     of the epipoles: 

•  It is easily seen that the fundamental matrix has the rank 2 
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Corresponding 
pixels sj,k; j=1,2; 
k=1,2, and the 
epipolar lines for 
given parameters 
a, e  
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Changes of the 
epipolar lines for 
new parameters a  
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Changes of the 
epipolar lines for 
new positions of 
the epipoles e  



Distance to an Epipolar Line 
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•  The unnormalised (or scaled) squared distance between a pixel an 
an epipolar line generated by the corresponding pixel can be 
represented as follows: 

(sk,2
TF sk,1)2 ≡  aTΦk(e)a 

     with the following 4 x 4 matrix Φk(e) = fk(e) fk
T(e) where the vector 

fk(e) combines the coordinates of the corresponding pixels and the 
epipoles: 
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Distance to an Epipolar Line 

COMPSCI 773 S1T 

•  Therefore the squared distance dk,1(a,e) of a pixel sk,1 from the 
epipolar line that corresponds to the pixel sk,2, and the like distance 
dk,2(a,e) of the pixel sk,2 from the epipolar line that corresponds to 
the pixel sk,1 are as follows: 

–  The denominators are the normalising factors: 

  

€ 

aTCk,1(e2)a ≡ a1 ⋅ xk,2 − xe,2( ) + a2 ⋅ yk,2 − ye,2( )( )2

+ a4 ⋅ xk,2 − xe,2( ) + a5 ⋅ yk,2 − ye,2( )( )2
 

aTCk,2 (e1)a ≡ a1 ⋅ xk,1 − xe,1( ) + a4 ⋅ yk,1 − ye,1( )( )2

+ a2 ⋅ xk,1 − xe,1( ) + a5 ⋅ yk,1 − ye,1( )( )2
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Normalising 
 factors 
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Normalised Fundamental Matrix 

COMPSCI 773 S1T 

•  Components of the fundamental matrix have to be normalised to 
exclude the singular case of F = 0 

•  An ideal horizontal stereo pair with the epipolar lines y1=y2=y that 
are parallel to the x-axis of the images has the following fundamental 
matrix: 

•  Here, the parameters a = 0 and the parameters e =[-∞, c1, ∞, c2]T 
where the constants cj may have arbitrary values  
–  It is impossible to normalise only the parameters a: all the components which 

are present in the normalising factors for the distance should be taken into 
account, i.e. all the components of F=[fij]ij=1,2,3 excepting the component f3,3 



Fundamental Matrix: Computation 
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•  Given a large set of corresponding points {(s1,k, s2,k): i = 1,…,n}, 
the equation s1

TFs2=0 can be used to estimate F 
•  Each point match s1,k=[x1,k,y1,k,1]T and s2,k=[x2,k,y2,k,1]T results in 

one linear equation for the unknown entries of F:    
                      x1,kx2,k f11 + x1,ky2,k f12 + x1,k f13  
                 + y1,kx2,k f21 + y1,ky2,k f22 + y1,k f23  
                 + x2,k f31 + y2,k f32 + f33                   = 0, or 

   [x1,kx2,k, x1,ky2,k, x1,k, y1,kx2,k, y1,kx2,k, y1,k, x2,k, y2,k,1]f = 0  
•  For a set of n point matches: a set of linear equations: 



Fundamental Matrix: Computation 

•  The set of equations Af=0 is homogeneous: so f can be 
determined up to scale 
–  For a solution to exist, A should have rank at most 8 
–  If the rank is exactly 8, then the solution is unique (up to scale), and can 

be found by linear methods 
•  A least-squares solution for noisy data: minf||Af|| 

–  The data are not exact (noisy) and  the rank of A is greater than 8 (i.e. 
equal to 9 because A has 9 columns) 

–  The least-squares solution for f is the singular vector corresponding to the 
smallest singular value of A, i.e. the last column of the matrix V in the 
singular value decomposition (SVD) A = UDVT 

•  The solution vector f found in this way minimises the vector norm ||Af|| 
subject to the condition ||f||=1 

•  The singularity constraint: the fundamental matrix F has rank 2 
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The 8-Point Algorithm 

•  Enforcing the singularity constraint by correcting the matrix F found by the 
SVD solution from A 

–  Close approximation of F with the matrix F’ with zero determinant |F’| = 0 
–  Can be done by the SVD: if F=UDVT is the SVD of F where D is the diagonal 

matrix D=diag{α,β,γ} such that α≥β≥γ, then F’=Udiag{α,β,0}VT 

•  The normalised 8-point algorithm 
–  Initial normalisation of input data: translation and scaling of each image so that 

the centroid of reference points is at the origin of the coordinates and the root 
mean square (RMS) distance of the points from the origin is equal to √ 2 

–  (i) Linear solution F is obtained from the vector f corresponding to the minimal 
singular value of A specifying the system of equations Af = 0 

–  (ii) Singularity constraint is enforced by replacing F by F’, the closest singular 
matrix to F, using the SVD 

–  Denornalisation: the linear transformation of F’ to fit the non-normalised data 
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Singular Value Decomposition 

•  Any generic m x n rectangular matrix A can be written as the 
product of three matrices: A = UDVT 

–  The columns of the m x m matrix U are mutually orthogonal unit vectors 
–  The columns of the n x n matrix V are mutually orthogonal unit vectors 
–  The m x n diagonal matrix D has diagonal elements σi called singular 

values such that σ1 ≥ σ2 ≥ … ≥ σN  ≥ 0   (N = min{m,n) }) 
–  The matrices U and V are not unique, but the singular values are fully 

determined by the matrix A 
•  A square matrix A is non-singular if and only if all its singular 

values are different from zero 
–  Ratio C = σ1 / σn  (condition number) - the degree of singularity of A 

•  If 1/C is comparable with the arithmetic precision of a computer, the matrix A 
is ill-conditioned and for all practical purposes should be considered singular 
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Singular Value Decomposition 

•  If A is a rectangular matrix, the number of non-zero singular 
values σi equals the rank of A  
–  Given a fixed tolerance, ε, being typically of order 10-6, the number of 

singular values greater than ε equals the effective rank of A 

•  If A is a square, non-singular matrix, its inverse  A−1 = VD−1UT  

–  Be A singular or not, the pseudoinverse of A, A+, is A+ = VD0
−1UT 

–  D0
−1 is equal to D−1 for all nonzero singular values and zero otherwise 

–  If A is nonsingular, then D0
−1 = D−1 and A+ = A−1  

•  The columns of U are eigenvectors of AAT 

•  The columns of V are eigenvectors of ATA 
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Singular Value Decomposition 

•  Property of the SVD: Avi = σiui and ATui = σivi  
–  Here, ui and vi are the columns of U and V corresponding to σi 

•  The squares of the nonzero singular values are the nonzero 
eigen-values of both the n x n matrix ATA and m x m matrix 
AAT  

•  There is another definition of SVD: 

                with the m x n matrix U and n x n matrices D and V  

•  The latter definition is typically used in computations because of 
a smaller memory space for the matrices: mn + 2N 2 rather that        
m2 + mn + N 2 for the initial definition as typically N << m  
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Rectification of Stereo Images 

•  Rectification of a stereo pair is a transformation (warping) of 
each image such that pairs of conjugate epipolar lines become 
collinear and parallel to one of the axes, usually the horizontal 
one 
–  Rectification reduces generally 2D search for correspondence to a 1D 

search on scan-lines having the same y-coordinate in both the images  

•  This transformation can be computed using the known intrinsic 
parameters of each camera and the extrinsic parameters of the 
stereo system 
–  The rectified images can be thought of as acquired by a new stereo rig 

obtained by rotating the original cameras around their optical centres  
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Rectification of Stereo Images 

•  Without losing generality, let us assume that in both cameras: 
–  (i) the origin of the image reference frame is the principal point (i.e. the 

trace of the optical axis), and  
–  (ii) the focal length is equal to f 
–  (iii) T and R are the translation vector (O1O2) and the rotation matrix, 

respectively, relating the coordinate frames of the left and right cameras  
•  The rectification algorithm consists in four steps:  

1.  Rotate the left camera by the rotation matrix Rrect so that the epipole 
goes to infinity along the horizontal axis (i.e. the left image plane 
becomes parallel to the baseline of the system)  

2.  Apply the same rotation to the right camera to recover the original 
geometry  

3.  Rotate the right camera by the rotation matrix R  
4.  Adjust the scale in both camera reference frames 
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Rotation Matrix Rrect 

•  Partially arbitrary choice of a triple of mutually orthogonal unit vectors e: 
•  e1 is given by the epipole (since the image centre is in the origin, the vector e1 

coincides with the direction of translation T) 
•  e2 – a vector orthogonal to e1 (an arbitrary choice: e2 = e1 x OZ (the optical axis) 

before normalisation 
•  e3 = e1 x e2 
•  The remaining steps are straightforward 
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Rectification Algorithm 

Input:   the intrinsic and extrinsic parameters of a stereo system;  
        a set of points in each camera to be rectified (could be the 
 whole   images)  

Build    the rotation matrix Rrect 
Set        Rl = Rrect and Rr = RRrect  
   for each left-camera point, pl = [x, y, f ]T,  
     compute the coordinates of the corresponding rectified point, p’l, as  

p’l = [ fx’/z’, fy’/z’, f ] where [x’,y’,z’]=Rlpl 
  Repeat the previous step for the right camera using Rr and pr  
Output: the pair of transformations to be applied to the two cameras in 

order to rectify the two input point sets; the rectified sets of points 
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Rectification of a Stereo Pair 
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