
Approximate Energy Minimisation
by Belief Propagation

COMPSCI 773 S1 T
VISION GUIDED CONTROL

A/P Georgy Gimel’farb

C.M.Bishop: Pattern Recognition and Machine Learning. Springer, 2006.

Graph Models: Joint P.D.

•  Joint probability distribution (p.d.) over a set of variables: a
 product of factors (functions depending each on a subset of variables xs)

•  Factor graph: a node for every variable xi and an additional
 node for each factor xs in the joint p.d.
–  Factor graph for a p.d. p(x) = fa(x1,x2)fb(x1,x2)fc(x2,x3)xd(x3)

CompSci 773 1

x1 x2 x3

fa fb fc fd

Factor Graphs

•  Factor graphs convey more detailed information about the
 underlying factorisation of a p.d. than models with only the
 variable nodes

•  Factor graphs are bipartite: two distinct kinds of nodes; all links go
 between nodes of opposite type

–  The same undirected or directed graph has many different factor graphs

CompSci 773 2

x2

x3 x1 x1 x1

x2 x2

x3 x3
f fa

fb
x2

x3 x1
x1

x2

x3
fc

fa
fb

CompSci 773 3

The Sum-product Algorithm

•  Evaluating local marginal probability distributions over a single
node or a subset of nodes
–  Joint probability distribution:
–  Marginal distribution of a single variable:

•  Summing - for the assumed discrete variables

•  Integration - for continuous variables (e.g. linear-Gaussian models)

•  Belief propagation for exact inference on digraphs without
loops is a special case of the sum-product algorithm

€

p(xi) = p(x)
x \ xi

∑ ≡ p(x1,,...,xi,...,xn)xn
∑xi+1

∑xi−1
∑x1

∑
€

p(x) ≡ p(x1,...,xn) = f s x s()
s
∏

CompSci 773 4

The Sum-product Algorithm

•  Original graph - an undirected or directed tree, or a polytree
–  The corresponding factor graph has a tree structure

•  To compute the marginal :
–  Substitute for p(x) using the factor graph expression

–  Then interchange summations and products for obtaining a
computationally efficient algorithm:

€

p(x) = f s(x s)s∏x \ x∑ ⇒ f s(x,x s)x s
∑s∈Nei(x)∏

Computing Marginals

•  Joint distribution of n variables p(x1,x2,…,xn); xi in [0,1,…,X-1]
•  Marginal distribution of a variable xi : generally, Xn-1 operations!

–  A very simple particular case:

CompSci 773 5

€

p(x1,K,xn) = f1(x1,x2) f2(x2,x3)L fn−1(xn−1,xn)
x1 x3

f1

x2

f2

xi-1

fi-1 fi

xi xi+1 xn-1

fn-1

xn

.

Computing a Marginal…
•  p(xi) for :

 only (N-1)X
2 operations by interchanging the sums and the products:

CompSci 773 6

€

p(xi) = f i−1(xi−1,xi)L f2(x2,x3)
x2 = 0

X −1

∑ f1(x1,x2)
x1 = 0

X −1

∑

ϕ1 (x2)6 7 4 8 4

ϕ 2 (x3)6 7 4 4 4 4 8 4 4 4 4

xi−1 = 0

X −1

∑

ϕ i−1 (xi)6 7 4 4 4 4 4 4 4 4 8 4 4 4 4 4 4 4 4

× fi(xi,xi+1)L fn−2(xn−2,xn−1)
xn−1 = 0

X −1

∑ fn−1(xn−1,xn)
xn= 0

X −1

∑
ψn−1 (xn−1)

1 2 4 4 3 4 4

ψn−2 (xn−2)
1 2 4 4 4 4 4 4 3 4 4 4 4 4 4

xi+1 = 0

X −1

∑

ψ i (xi)
1 2 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4

€

p(x1,K,xn) = f1(x1,x2) f2(x2,x3)L fn−1(xn−1,xn)

€

x1⇒ xi

€

xi ⇐ xn

CompSci 773 7

The Sum-product Algorithm

•  Partitioning the factors in the joint
distribution p(x) into groups due to
the tree structure of the graph:

–  One group is associated with each
of the factor nodes that is a
neighbour of the variable node x

–  Nei(x) - the set of factor nodes fs
that are neighbours of x

–  Xs - the set of all variables in a
subtree connected to the variable
node x via the factor node fs

–  Fs(x,Xs) - the product of all the
factors in the group associated
with the factor node fs

x fs
.......

.......

A fragment of a factor graph: the
 evaluation of the marginal p(x)

€

p(x) = Fs x,Xs()
s∈Nei(x)
∏

Messages from fs to x:

Computing a Marginal…

Particular case:

CompSci 773 8

x1 x3

f1

x2

f2

xi-1

fi-1 fi

xi xi+1 xn-1

fn-1

xn

.

€

p(x) = Fs xi,Xs()
s∈Nei(xi)={ fi−1 , fi }

∏ = fk (xk,xk+1)
k=1

i−1

∏
Ffi−1 xi ,X fi−1()

1 2 4 4 3 4 4

fk (xk,xk+1)
k= i

n−1

∏
Ffi xi ,X fi()

1 2 4 4 3 4 4

p(xi) = Fs(xi,Xs) = µ fi−1→xi
(xi)µ fi →xi

(xi)
X s

∑
s∈Nei(xi)
∏

€

Nei(xi) = f i−1, fi{ }

€

X fi−1
= x1,K,xi−1{ }

€

X fi
= xi+1,K,xn{ }

€

µ fi−1→x i
(xi) = Fs xi, x1,...,xi−1{ }()

x1 ,...,xi−1

∑

€

µ fi→x i
(xi) = Fs xi, xi+1,...,xn{ }()

xi+1 ,...,xn

∑

CompSci 773 9

The Sum-product Algorithm

•  The goal marginal is the product of all the incoming messages:

–  Each factor Fs(x,Xs) is described by a factor (sub)-graph and so can itself
be factorised:

•  x1, …, xM are the variables associated with factor fs in addition to x €

p(x) = p(x)
x \ x
∑ = Fs x,Xs()

s∈Nei(x)
∏

x \ x
∑ = Fs x,Xs()

X s

∑










 s∈Nei(x)

∏ = µ fs →x (x)
s∈Nei(x)
∏

xM

x fs
....
xm

...

(x, x1, …, xM) ≡ xs

Messages from variable
 nodes to factor nodes

Messages from factor
 nodes to variable nodes

CompSci 773 10

The Sum-product Algorithm

•  Computing the messages from factor nodes to variable nodes
[Nei(fs) - the set of variable nodes being neighbours of the factor node fs
 Nei(fs)\ x - the same set but without node x]:

€

µ fs →x (x) ≡ Fs(x,Xs)
X s

∑ = L f s(x,x1,...,xM) Gm (xm,Xsm)
X sm

∑










 m∈Nei(fs)\ x

∏
xM

∑
x1

∑

= L f s(x,x1,...,xM) µxm→ fs
(xm)

m∈Nei(fs)\ x
∏

xM

∑
x1

∑

xM

x fs
....
xm

...

Evaluating the message sent by a factor node
to a variable node along their connecting link:
(i) Take the product of the incoming messages
along all other links coming to the factor node,
(ii) Multiply by the factor associated with that
node, and
(iii) Marginalise over all the variables
associated with the incoming messages

CompSci 773 11

The Sum-product Algorithm

•  A factor node can send a message to a variable node once it has received
incoming messages from all other neighbouring variable nodes

xM

x fs
....
xm

...

•  Evaluating the messages from variable nodes to
factor nodes - again by the (sub)-graph factorization

–  The term Gm(xm,Xsm) associated with node xm is
given by a product of terms Fl (xm,Xml) each
associated with one of the factor nodes fl that is
linked to node xm (excluding node fs):

–  The product: over all neighbours of node xm except
for node fs

–  Each of the factors Fl(xm,Xml): a subtree of the
original graph of the same kind as the joint p(x)

.... xm ...

fL

fs

fl
€

Gm (xm,Xsm) = Fl (xm,Xml)
l∈Nei(xm)\ fs

∏

CompSci 773 12

The Sum-product Algorithm

•  Evaluating the message sent by a variable node to an adjacent
factor node along the connecting link:
–  The product of the incoming messages along all of the other links:

•  Any variable node having only two neighbours simply passes messages
through unchanged

•  A variable node can send a message to a factor node once it has received
incoming messages from all other neighbouring factor nodes

–  The marginal for variable node x is given by the product of incoming
messages along all of the links arriving at that node

•  Each of these messages can be computed recursively in terms of other
messages by viewing x as the root of the tree and starting at the leaf nodes

€

Gm (xm,Xsm) = Fl (xm,Xml)
l∈Nei(xm)\ fs

∏

€

µxm→ fs
(xm) = Fl (xm ,Xml)

Xml

∑










 l∈Nei(xm)\ fs

∏ = µ fl→xm
(xm)

l∈Nei(xm)\ fs

∏

CompSci 773 13

The Sum-product Algorithm

–  If a leaf node is a variable node, then µx→f (x) = 1
–  If the leaf node is a factor node, then µf→x (x) = f(x)

•  General algorithm:
–  Arbitrarily pick any (variable or factor) node and designate it as the root
–  Propagate messages from the leaves to the root until the root node will

have received messages from all of its neighbours
–  Once this message propagation is complete, then propagate messages

from the root to all of its neighbours and further along all of the links
outwards from the root all the way to the leaves

•  Now, a message will pass in both directions across every link in the graph,
and every node will receive a message from all of its neighbours

•  The marginal distribution is readily calculated for every variable in the graph
because every variable node has received messages from all its neighbours

€

p(x) = µ fs →x x()
s∈Nei(x)
∏

€

p(x s) = f s(x s) µxi → fs
xi()

i∈Nei(fs)
∏

CompSci 773 14

The Sum-product Algorithm

•  After one message has passed in each direction across each
link, the marginals are evaluated as

•  Normalisation of the distribution
–  If the factor graph is derived from a directed graph, then the joint

distribution is already correctly normalised
•  So the computed marginals will be similarly normalised

–  For an undirected graph, in general there is an unknown factor 1/Z
•  The sum-product algorithm is to be run first with an unnormalised version of

the joint distribution in order to find the unnormalised marginals
•  The factor 1/Z is then easily obtained by normalising any one of these

marginals (a computationally efficient approach because the normalisation is
done over a single variable rather than over the entire set of variables)

€

p(x) = µ fs →x x()
s∈Nei(x)
∏

CompSci 773 15

The Sum-product Algorithm: An Example
•  Unnormalised joint distribution:

•  Starting with the leaf nodes:

•  Propagating messages from the root
node out to the leaf nodes

x1 x2

x4

x3 fa fb

fc

x1 x2

x4

x3 fa fb

fc

x1 x2

x4

x3 fa fb

fc

Flow of messages from
 the leaf nodes towards
 the root node

Flow of messages from
 the root node towards
 the leaf nodes

root leaf

leaf

€

p(x) = µ fs →x x()
s∈Nei(x)
∏

€

p(x s) = f s(x s) µxi → fs
xi()

i∈Nei(fs)
∏

The Max-sum Algorithm

•  An application of dynamic programming in the graphical models

•  Find the set of values that jointly have the max probability:

–  An example for a chain of nodes:

16 CompSci 773

The Max-sum Algorithm

•  Similarly to the sum-product algorithm, the max-sum algorithm is
 readily written down in terms of message passing by replacing
 ‘sum’ with ‘max’ and products with sums of logarithms:

•  The initial messages sent by the leaf nodes:

17 CompSci 773

CompSci 773 18

The Max-sum Algorithm

•  The maximum probability at the root node:

–  The maximum of the joint probability is found by propagating messages
from leaves to an arbitrary chosen root node

–  The result is the same irrespective of which node is chosen as the root

•  But the propagation of the messages back from the root to the
leaves (with maximisation instead of summing) fails to return xmax

–  Individual variable values found by maximising the product of messages
at each node may belong to different maximizing configurations xmax

–  An overall configuration may no longer correspond to a maximum

€

pmax = max
x

µ fs →x (x)
s∈ne(x)∑[]; xmax = argmax

x
µ fs →x (x)

s∈ne(x)∑[]

CompSci 773 19

The Max-sum Algorithm

•  To resolve the problem: a different kind of message passing from
the root node to the leaves
–  Example: a chain of N variables x1, …, xN each having K states

x1 xn+1 xn xN xn-2 … …

k = 1

k = 2

k = 3 n-2 n-1 n n+1

Global maximum path

xn-1

CompSci 773 20

The Max-sum Algorithm

•  Suppose node xN is taken to be the root node

Phase 1: Propagate messages from the leaf node x1 to the root node:

–  There could be several values xn-1 giving above the same maximum

Phase 2: Backtracking - propagate a message back down the chain:

CompSci 773 21

The Max-sum Algorithm

•  To have a global maximum of a joint probability distribution:
1.  Keep track of the maximising states during the forward pass (φ(xn))
2.  Use back-tracking to find a consistent solution

•  Extension to a general tree-structured factor graph:
–  If a message is sent from a factor node f to a variable node x, a

maximisation is performed over all other variable nodes x1, …, xM that
are neighbours of that factor node

–  When this maximisation is performed, we keep a record of which values
of the variables x1, …, xM gave rise to the maximum

–  Then in the backtracking step, having found xmax, we use the stored
values to assign consistent maximising states xmax

1, …, xmax
M

•  Important application: the Viterbi algorithm (to find a HMM model)

MRF Model for Stereo

CompSci 773 22

Observed variables Yj

Hidden variables Xj

Posterior model:

€

P(X |Y)∝ ψ j (X j ,Yj) ϕ ji(X j ,Xi)
i∈Neib(j)
∏




 




 

j
∏

Y-X messages mj

X-X messages mj,i

J.Sun et al., Stereo Matching Using Belief Propagation, IEEE T. PAMI, vol.25 (7), 787-800, 2003

Max-sum Algorithm for Stereo

•  Log-likelihood:

–  Simplification: mji(Xj, Xi) = mji (Xi); mj(Xj,Yj) = mj(Xj)

•  Max-sum BP:
1.  Initialise all messages mji (Xi) = 0 and mj(Xj) = log ψj (Xj,Yj)

2.  Update messages mji (Xi) iteratively for j = 1, …, J

3.  Compute beliefs:

CompSci 773 23

€

logP(X |Y)∝ logψ j (X j ,Yj) + logϕ ji(X j ,Xi)
i∈Neib(j)
∑




 




 

j
∑

€

m ji
[t+1](Xi)←max

x j
logϕ ji(X j ,Xi) + m j

[t](X j) + mkj
[t](X j)

k∈Neib(j)\ i
∑





 





 

€

b j (X j)←m j
[t](X j) + mkj

[t](X j)
k∈Neib(j)
∑ ; X j

MAP = argmax
X

b j (X)

J.Sun et al., Stereo Matching Using Belief Propagation, IEEE T. PAMI, vol.25 (7), 787-800, 2003

CompSci 773 24

Exact Inference in General Graphs

•  The MAP solution y* = arg maxyp(y|x) can be found by special
random sampling from p(y|x) called simulated annealing
–  But its convergence is too slow in most practical cases

•  The sum-product and max-sum algorithms provide efficient and
exact solutions to inference problems in tree-structured graphs

•  For many practical applications, graphs have loops
–  The message passing framework can be generalised to arbitrary graphs

topologies to give an exact inference procedure
–  But in the case of discrete variables, its computational complexity grows

exponentially with the maximum number of interdependent variables
–  Thus for many problems of practical interest, it is not feasible to use exact

inference, so that effective approximation methods have to be exploited

CompSci 773 25

Approximate Inference

•  Loopy belief propagation (LBP)
–  Is possible because the message passing rules for the sum-product

algorithm are purely local
–  But because now the graph has cycles, information can flow many times

around the graph
•  For some models, the algorithm converges, whereas for others it will not

–  Message passing schedule: when each node should send a message
across link from the node after receiving messages from all other links

•  Transmit only pending messages: after a node receives a message on one of
its links (convergence to the exact marginal if no more pending messages)

•  Graph-cut-based algorithms
–  Exact inference only for binary vector signals x and decisions y

