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Three Basic Cases 

Depending on the amount of a priori knowledge: 
1.  Both intrinsic and extrinsic parameters: the unique 

reconstruction of a 3-D scene by triangulation 
2.  Only the intrinsic parameters: a 3-D scene is still  

reconstructed and also the extrinsic parameters are 
estimated, but up to an unknown scaling factor 

3.  Only pixel correspondences: a 3-D scene is still 
reconstructed, but up to an unknown, global 
projective transformation 



COMPSCI 773 2 

Triangulation from Projections 

•  Point P, projected into the pair of corresponding points 
pl and pr, lies at the intersection of the two rays from Ol 
through pl and from Or through pr, respectively 
–  Approximate parameters and image locations: the two rays 

may not actually intersect in space 

–  Estimate of the intersection: the point of minimum distance 
from both rays 
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Triangulation (in the left reference frame) 

•  apl; a∈R=[-∞,∞] - the ray, l, through Ol and pl 

•  T+bRTpr; b∈R - the ray, r, through Or and pr 

•  w = pl × RTpr - a vector orthogonal to both l and r 
– P′ - the midpoint of the segment joining l and r and parallel to w 

–  Endpoints of the segment, a0pl and T+b0RTpr - by solving 
the linear system of equations for a0, b0, and c0:  

  

€ 

api + c pi × R
Tp j( ) = T+ bRTp j

⇒ api − bR
Tp j + c pi × R

Tp j( ) = T
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Reconstruction up to a Scale 

•  Reconstruction by using the essential matrix 
–  Only the intrinsic parameters and n point correspondences,  n 
≥ 8, are known 

–  Since the baseline is unknown, the true scale of the viewed 
scene cannot be recovered 

•  The estimated essential matrix, E, can only be known 
up to an arbitrary scale factor 
–  Convenient normalisation of E - by normalising the length of 

the translation vector T to unit 
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Normalisation of E 

•  From the definition of the essential matrix, E = RS: 

•  The normalised essential matrix: 
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Recovering the Pair (   , R)    

•  The components of     - from any row or column of  
–  The estimates may differ from the true components by a 

global sign change (due to quadratic entries of         ) 

–  Rotation matrix - from     and    : 

–  Due to the twofold ambiguity in the sign of    and    , there are 
four different estimates for the pair (  , R) 
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Recovering the Pair (   , R) 

•  The 3-D reconstruction of the viewed points resolves 
the ambiguity and finds the only correct estimate 
–  The third component of each point in the left reference frame 

is computed for each of the four pairs (   , R):  € 
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Reconstruction Algorithm 

Input: a set of corresponding points and an estimate 
1.  Recover the normalised translation vector 
2.  Recover the rotation matrix R 
3.  Reconstruct the coordinates Zl and Zr of each point 
4.  If the signs of Zl and Zr of the reconstructed points are: 

(a)  both negative for some point, change the sign of    and go to 3 
(b)  one negative, one positive for some point, change the sign of 

each entry of     and go to 2 
(c)  both positive for all points, exit 
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Uncalibrated Reconstruction  

•  No information on the intrinsic and extrinsic parameters 
•  Only n point correspondences, n > 8, are given 

–  Thus the location of the epipoles is known 
–  The accuracy of the reconstruction is affected by that of the 

algorithms computing the disparities, not by calibration 

•  The reconstruction is unique only up to an unknown 
projective transformation of the world 
–  From 5 arbitrary scene points and the epipoles, the projection 

matrix of each camera is recovered up to this transformation; 
then the 3-D location of any point is found by triangulation  
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Uncalibrated Reconstruction 

–  Homogeneous 3-D / 2-D coordinates: [X,Y,Z]T ⇒ [X,Y,Z,1]T 
and [x,y]T ⇒ [x,y,1]T  

•  Five points P1,…,P5 to be recovered from their left and 
right images, p1,…,p5 and p′1,…,p′5  
–  No three of them should be collinear and no four coplanar 

•  Spatial projective transformation is fixed if the destiny of 
5 points is known: Mpi = ρipi  (ρi ≠ 0; M - the projection matrix) 
– Without losing generality, a projective transformation is set up 

to send these five points to P1 = [1,0,0,0]T, P2 = [0,1,0,0]T, 
P3 = [0,0,1,0]T, P4 = [0,0,0,1]T, P5 = [1,1,1,1]T 
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Uncalibrated Reconstruction 

•  Planar projective transformation is fixed if the destiny of 
4 points is known 
–  A projective transformation is set up to send the first four pi to 

p1 = [1,0,0]T, p2 = [0,1,0]T, p3 = [0,0,1]T, p4 = [1,1,1]T  
•  p5 = [α, β, γ]T in this standard projective basis 

–  The setups simplify the expression of the projection matrix M: 
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Uncalibrated Reconstruction 

–  Projection matrices of the left and right camera are found up 
to the unknown parameters x, x′: 

–  These parameters are computed using the projection centres 
O,O′ found as the null spaces of M, M′(MO = 0; M′O′= 0) 
and the known location of the epipoles e, e′ (as MO′ = σ e; 
M′O = σ ′e′ with σ ≠ 0 and σ ′ ≠ 0)  

•  Then any 3-D point is reconstructed using the projective 
rays through O, O′  
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