

3-D Reconstruction

COMPSCI 773 S1 T VISION GUIDED CONTROL *A/P Georgy Gimel'farb*

Three Basic Cases

Depending on the amount of a priori knowledge:

- **1. Both intrinsic and extrinsic parameters**: the unique reconstruction of a 3-D scene by *triangulation*
- **2. Only the intrinsic parameters**: a 3-D scene is still reconstructed and also the extrinsic parameters are estimated, but **up to an unknown scaling factor**
- **3. Only pixel correspondences**: a 3-D scene is still reconstructed, but **up to an unknown, global projective transformation**

Triangulation from Projections

- Point P, projected into the pair of corresponding points \mathbf{p}_l and \mathbf{p}_r , lies at the intersection of the two rays from O_l through \mathbf{p}_l and from O_r through \mathbf{p}_r , respectively
	- Approximate parameters and image locations: the two rays may not actually intersect in space
	- **Estimate of the intersection**: the point of minimum distance from both rays *l r*

Triangulation (in the left reference frame)

- $a\mathbf{p}_i$; $a \in \mathbb{R}$ =[$-\infty$, ∞] the ray, *l*, through O_l and \mathbf{p}_l
- **T**+ bR^T **p**_{*r*}; $b \in \mathbb{R}$ the ray, *r*, through O_r and \mathbf{p}_r
- $\mathbf{w} = \mathbf{p}_l \times R^T \mathbf{p}_r$ a vector orthogonal to both *l* and *r*
	- P' the midpoint of the segment joining l and r and parallel to $\bf w$
	- $-$ Endpoints of the segment, $a_0\mathbf{p}_l$ and $\mathbf{T+}b_0R^{\mathsf{T}}\mathbf{p}_r$ by solving the linear system of equations for a_0 , b_0 , and c_0 .

$$
a\mathbf{p}_i + c(\mathbf{p}_i \times R^{\mathsf{T}} \mathbf{p}_j) = \mathbf{T} + bR^{\mathsf{T}} \mathbf{p}_j
$$

\n
$$
\Rightarrow a\mathbf{p}_i - bR^{\mathsf{T}} \mathbf{p}_j + c(\mathbf{p}_i \times R^{\mathsf{T}} \mathbf{p}_j) = \mathbf{T}
$$

Reconstruction up to a Scale

- Reconstruction by using the essential matrix
	- Only the intrinsic parameters and *n* point correspondences, *n* ≥ 8 , are known
	- Since the baseline is unknown, the true scale of the viewed scene cannot be recovered
- The estimated essential matrix, *E*, can only be known up to an arbitrary scale factor
	- Convenient normalisation of *E* by normalising the length of the translation vector **T** to unit

$$
||T|| = \sqrt{T_x^2 + T_y^2 + T_z^2}
$$

Normalisation of *E*

- From the definition of the essential matrix, $E = RS$: $E^TE = S^TR^TRS = S^TS =$ 0 *T ^z* −*Ty* −*T ^z* 0 *Tx T_y* −*T_x* 0 ſ L l I I 1 J $\overline{}$ $\overline{}$ $\overline{}$ 0 −*T z Ty T ^z* 0 −*Tx* −*Ty Tx* 0 \lceil L l l I] J $\overline{}$ $\overline{}$ $\overline{}$ = $T_y^2 + T_z^2 - -T_xT_y - -T_xT_z$ $-T_yT_x$ $T_z^2 + T_x^2 - T_yT_z$ $-T_zT_x$ $-T_zT_y$ $T_x^2 + T_y^2$ ſ L l l I 1 \rfloor $\overline{}$ $\overline{}$ $\overline{}$ \Rightarrow $Tr(E^{\mathsf{T}}E) = 2||\mathbf{T}||^2 \Rightarrow \hat{\mathbf{T}} = \frac{\mathbf{T}}{||\mathbf{T}||^2}$ **T** ≡ $\hat T_{\rm x}$ \hat{T}_{z} \hat{T}_{z} F L I I I 1 \rfloor $\overline{}$ $\overline{}$ $\overline{}$
- The normalised essential matrix:

$$
\hat{E} = \frac{E}{\sqrt{Tr(E^{\mathsf{T}}E)/2}} \Rightarrow \hat{E}^{\mathsf{T}}\hat{E} = \begin{bmatrix} 1 - \hat{T}_x^2 & -\hat{T}_x\hat{T}_y & -\hat{T}_x\hat{T}_z \\ -\hat{T}_y\hat{T}_x & 1 - \hat{T}_y^2 & -\hat{T}_y\hat{T}_z \\ -\hat{T}_z\hat{T}_x & -\hat{T}_z\hat{T}_y & 1 - \hat{T}_z^2 \end{bmatrix}
$$

COMPSCI 773 Services and the contract of the c

Recovering the Pair $(\hat{\textbf{T}}, R)$

- The components of $\mathbf{\hat{T}}$ from any row or column of $\hat{E}^{\top}\hat{E}$
	- The estimates may differ from the true components by a global sign change (due to quadratic entries of $\hat{E}^\intercal \hat{E})^\intercal$
	- Rotation matrix from \hat{E} and $\hat{\textbf{T}}$: \hat{E} and $\hat{\textbf{T}}$:

$$
\hat{E} = \begin{bmatrix} \hat{\mathbf{E}}_1^{\mathsf{T}} \\ \hat{\mathbf{E}}_2^{\mathsf{T}} \\ \hat{\mathbf{E}}_3^{\mathsf{T}} \end{bmatrix} \implies \mathbf{w}_i = \hat{\mathbf{E}}_i \times \hat{\mathbf{T}} \implies R = \begin{bmatrix} \mathbf{R}_1^{\mathsf{T}} = (\mathbf{w}_1 + \mathbf{w}_2 \times \mathbf{w}_3)^{\mathsf{T}} \\ \mathbf{R}_2^{\mathsf{T}} = (\mathbf{w}_2 + \mathbf{w}_3 \times \mathbf{w}_1)^{\mathsf{T}} \\ \mathbf{R}_3^{\mathsf{T}} = (\mathbf{w}_3 + \mathbf{w}_1 \times \mathbf{w}_2)^{\mathsf{T}} \end{bmatrix}
$$

 $-$ Due to the twofold ambiguity in the sign of \hat{E} and $\hat{\textbf{T}}$, there are four different estimates for the pair $(\widetilde{\mathbf{T}}, R)$

Recovering the Pair $(\hat{\textbf{T}}, R)$

- The 3-D reconstruction of the viewed points resolves the ambiguity and finds the only correct estimate
	- The third component of each point in the left reference frame is computed for each of the four pairs $({\bf I}, R)$:
 ${\bf p} = R({\bf p} - \hat{\bf T})$, ${\bf n} = \frac{f_r}{r} {\bf p}$, $Z = {\bf R}^T({\bf p} - \hat{\bf T})$ \Rightarrow ${\bf n}$ $\boldsymbol{\tilde{\text{T}}^{}}$. $\mathbf{P}_r = R(\mathbf{P}_l - \hat{\mathbf{T}}); \ \mathbf{p}_r = \frac{f_r}{Z}$ *Zr* **P**_{*r*}; $Z_r = \mathbf{R}_3^T (\mathbf{P}_l - \hat{\mathbf{T}}) \Rightarrow \mathbf{p}_r = \frac{f_r R (\mathbf{P}_l - \hat{\mathbf{T}})}{\mathbf{P}_l^T (\mathbf{p}_l - \hat{\mathbf{T}})}$ $\mathbf{R}_3^\mathsf{T}\Big(\mathbf{P}_l-\hat{\mathbf{T}}\Big)$

$$
\Rightarrow x_r = \frac{f_r \mathbf{R}_1^{\mathsf{T}} \left(\mathbf{P}_l - \hat{\mathbf{T}} \right)}{\mathbf{R}_3^{\mathsf{T}} \left(\mathbf{P}_l - \hat{\mathbf{T}} \right)}; \ \mathbf{p}_l = \frac{f_l}{Z_l} \mathbf{P}_l \Rightarrow Z_l = f_l \frac{\left(f_r \mathbf{R}_1 - x_r \mathbf{R}_3 \right)^{\mathsf{T}} \hat{\mathbf{T}}}{\left(f_r \mathbf{R}_1 - x_r \mathbf{R}_3 \right)^{\mathsf{T}} \mathbf{p}_l}
$$

$$
\Rightarrow \mathbf{P}_l = \frac{\left(f_r \mathbf{R}_1 - x_r \mathbf{R}_3\right)^{\mathsf{T}} \mathbf{\hat{T}}}{\left(f_r \mathbf{R}_1 - x_r \mathbf{R}_3\right)^{\mathsf{T}} \mathbf{p}_l}; \quad \mathbf{P}_r = R\left(\mathbf{P}_l - \mathbf{\hat{T}}\right)
$$

COMPSCI 773 7

Reconstruction Algorithm

Input: a set of corresponding points and an estimate \hat{E}

- 1. Recover the normalised translation vector $\hat{\mathbf{T}}$
- 2. Recover the rotation matrix *R*
- 3. Reconstruct the coordinates Z_l and Z_r of each point
- 4. If the signs of Z_l and Z_r of the reconstructed points are:
	- (a) both negative for some point, change the sign of $\mathbf{\hat{T}}$ and go to 3
	- (b) one negative, one positive for some point, change the sign of each entry of L and go to 2 E^{II}
	- (c) both positive for all points, exit

Uncalibrated Reconstruction

- No information on the intrinsic and extrinsic parameters
- Only n point correspondences, $n > 8$, are given
	- Thus the location of the epipoles is known
	- The accuracy of the reconstruction is affected by that of the algorithms computing the disparities, not by calibration
- The reconstruction is unique only up to an unknown projective transformation of the world
	- From 5 arbitrary scene points and the epipoles, the projection matrix of each camera is recovered up to this transformation; then the 3-D location of any point is found by triangulation

Uncalibrated Reconstruction

- Homogeneous 3-D / 2-D coordinates: [*X,Y,Z*]^T ⇒ [*X,Y,Z,*1]^T and $[x, y]^\mathsf{T} \Rightarrow [x, y, 1]^\mathsf{T}$
- Five points P_1, \ldots, P_5 to be recovered from their left and right images, $\mathbf{p}_1, \ldots, \mathbf{p}_5$ and $\mathbf{p'}_1, \ldots, \mathbf{p'}_5$
	- No three of them should be collinear and no four coplanar
- Spatial projective transformation is fixed if the destiny of 5 points is known: M **p**_{*i*} = ρ _{*i*}**p**_{*i*} (ρ _{*i*} \neq 0; *M* - the projection matrix)
	- Without losing generality, a projective transformation is set up to send these five points to $P_1 = [1,0,0,0]^T$, $P_2 = [0,1,0,0]^T$, $\mathbf{P}_3 = [0,0,1,0]^T$, $\mathbf{P}_4 = [0,0,0,1]^T$, $\mathbf{P}_5 = [1,1,1,1,1]^T$

€

Uncalibrated Reconstruction

- Planar projective transformation is fixed if the destiny of 4 points is known
	- $-$ A projective transformation is set up to send the first four \mathbf{p}_i to $\mathbf{p}_1 = [1, 0, 0]^T$, $\mathbf{p}_2 = [0, 1, 0]^T$, $\mathbf{p}_3 = [0, 0, 1]^T$, $\mathbf{p}_4 = [1, 1, 1]^T$
		- $\mathbf{p}_5 = [\alpha, \beta, \gamma]^\mathsf{T}$ in this standard projective basis
	- The setups simplify the expression of the projection matrix *M*:

$$
M\ni=1,2,3,4\n
$$
M =\n\begin{bmatrix}\n\rho_1 & 0 & 0 & \rho_4 \\
0 & \rho_2 & 0 & \rho_4 \\
0 & 0 & \rho_3 & \rho_4\n\end{bmatrix}\n\right}\n\Rightarrow\nM =\n\begin{bmatrix}\n\alpha \rho_5 - \rho_4 & 0 & 0 & \rho_4 \\
0 & \beta \rho_5 - \rho_4 & 0 & \rho_4 \\
0 & 0 & \gamma \rho_5 - \rho_4 & \rho_4\n\end{bmatrix}
$$
$$

Uncalibrated Reconstruction

– Projection matrices of the left and right camera are found up to the unknown parameters x, x' :
 $\begin{bmatrix} ax-1 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} \alpha x - 1 & 0 & 0 & 1 \end{bmatrix}$ I] $\overline{}$ $\begin{bmatrix} \alpha'x'-1 & 0 & 0 & 1 \end{bmatrix}$ I $\cdot \rceil$ $\overline{}$

$$
M = \begin{bmatrix} 0 & \beta x - 1 & 0 & 1 \\ 0 & 0 & \gamma x - 1 & 1 \end{bmatrix}; x = \frac{\rho_5}{\rho_4}; \quad M' = \begin{bmatrix} 0 & \beta' x' - 1 & 0 & 1 \\ 0 & 0 & \gamma' x' - 1 & 1 \end{bmatrix}; x' = \frac{\rho_5'}{\rho_4'}
$$

- These parameters are computed using the projection centres **O**, **O**^{\prime} found as the null spaces of *M*, *M*^{\prime}(*M***O** = 0; *M*^{\prime}**O**^{\prime} = 0) and the known location of the epipoles \mathbf{e}, \mathbf{e}' (as $M\mathbf{O}' = \sigma \mathbf{e};$ M' **O** = σ' **e**′ with $\sigma \neq 0$ and $\sigma' \neq 0$)
- Then any 3-D point is reconstructed using the projective rays through **O**, **O**′