

3-D Reconstruction

COMPSCI 773 S1 T VISION GUIDED CONTROL A/P Georgy Gimel'farb

Three Basic Cases

Depending on the amount of a priori knowledge:

- 1. Both intrinsic and extrinsic parameters: the unique reconstruction of a 3-D scene by *triangulation*
- 2. Only the intrinsic parameters: a 3-D scene is still reconstructed and also the extrinsic parameters are estimated, but up to an unknown scaling factor
- 3. Only pixel correspondences: a 3-D scene is still reconstructed, but up to an unknown, global projective transformation

Triangulation from Projections

- Point *P*, projected into the pair of corresponding points **p**_l and **p**_r, lies at the intersection of the two rays from *O*_l through **p**_l and from *O*_r through **p**_r, respectively
 - Approximate parameters and image locations: the two rays may not actually intersect in space
 - Estimate of the intersection: the point of minimum distance

Triangulation (in the left reference frame)

- $a\mathbf{p}_l$; $a \in \mathbf{R} = [-\infty, \infty]$ the ray, l, through O_l and \mathbf{p}_l
- $\mathbf{T} + bR^{\mathsf{T}}\mathbf{p}_{r}$; $b \in \mathbf{R}$ the ray, r, through O_{r} and \mathbf{p}_{r}
- $\mathbf{w} = \mathbf{p}_l \times R^T \mathbf{p}_r$ a vector orthogonal to both *l* and *r*
 - -P' the midpoint of the segment joining l and r and parallel to ${f w}$
 - Endpoints of the segment, $a_0 \mathbf{p}_l$ and $\mathbf{T} + b_0 R^{\mathsf{T}} \mathbf{p}_r$ by solving the linear system of equations for a_0 , b_0 , and c_0 :

$$a\mathbf{p}_{i} + c\left(\mathbf{p}_{i} \times R^{\mathsf{T}}\mathbf{p}_{j}\right) = \mathbf{T} + bR^{\mathsf{T}}\mathbf{p}_{j}$$
$$\Rightarrow a\mathbf{p}_{i} - bR^{\mathsf{T}}\mathbf{p}_{j} + c\left(\mathbf{p}_{i} \times R^{\mathsf{T}}\mathbf{p}_{j}\right) = \mathbf{T}$$

Reconstruction up to a Scale

- Reconstruction by using the essential matrix
 - Only the intrinsic parameters and *n* point correspondences, *n* ≥ 8, are known
 - Since the baseline is unknown, the true scale of the viewed scene cannot be recovered
- The estimated essential matrix, *E*, can only be known up to an arbitrary scale factor
 - Convenient normalisation of *E* by normalising the length of the translation vector **T** to unit

$$\|T\| = \sqrt{T_x^2 + T_y^2 + T_z^2}$$

Normalisation of *E*

- From the definition of the essential matrix, E = RS: $E^{\mathsf{T}}E = S^{\mathsf{T}}R^{\mathsf{T}}RS = S^{\mathsf{T}}S = \begin{bmatrix} 0 & T_z & -T_y \\ -T_z & 0 & T_x \\ T_y & -T_x & 0 \end{bmatrix} \begin{bmatrix} 0 & -T_z & T_y \\ T_z & 0 & -T_x \\ -T_y & T_x & 0 \end{bmatrix}$ $= \begin{bmatrix} T_y^2 + T_z^2 & -T_x T_y & -T_x T_z \\ -T_y T_x & T_z^2 + T_x^2 & -T_y T_z \\ -T_z T_x & -T_z T_y & T_x^2 + T_y^2 \end{bmatrix} \Rightarrow Tr(E^{\mathsf{T}}E) = 2\|\mathbf{T}\|^2 \Rightarrow \hat{\mathbf{T}} = \frac{\mathbf{T}}{\|\mathbf{T}\|} = \begin{bmatrix} \hat{T}_x \\ \hat{T}_z \\ \hat{T}_z \end{bmatrix}$
- The normalised essential matrix:

$$\hat{E} = \frac{E}{\sqrt{Tr(E^{\mathsf{T}}E)/2}} \Rightarrow \hat{E}^{\mathsf{T}}\hat{E} = \begin{bmatrix} 1 - \hat{T}_{x}^{2} & -\hat{T}_{x}\hat{T}_{y} & -\hat{T}_{x}\hat{T}_{z} \\ -\hat{T}_{y}\hat{T}_{x} & 1 - \hat{T}_{y}^{2} & -\hat{T}_{y}\hat{T}_{z} \\ -\hat{T}_{z}\hat{T}_{x} & -\hat{T}_{z}\hat{T}_{y} & 1 - \hat{T}_{z}^{2} \end{bmatrix}$$

COMPSCI 773

Recovering the Pair $(\hat{\mathbf{T}}, R)$

- The components of $\hat{\mathbf{T}}$ from any row or column of $\hat{E}^{\mathsf{T}}\hat{E}$
 - The estimates may differ from the true components by a global sign change (due to quadratic entries of $\hat{E}^{\mathsf{T}}\hat{E}$)
 - Rotation matrix from \hat{E} and \hat{T} :

$$\hat{E} = \begin{bmatrix} \hat{\mathbf{E}}_{1}^{\mathsf{T}} \\ \hat{\mathbf{E}}_{2}^{\mathsf{T}} \\ \hat{\mathbf{E}}_{3}^{\mathsf{T}} \end{bmatrix} \implies \mathbf{w}_{i} = \hat{\mathbf{E}}_{i} \times \hat{\mathbf{T}} \implies R = \begin{bmatrix} \mathbf{R}_{1}^{\mathsf{T}} = (\mathbf{w}_{1} + \mathbf{w}_{2} \times \mathbf{w}_{3})^{\mathsf{T}} \\ \mathbf{R}_{2}^{\mathsf{T}} = (\mathbf{w}_{2} + \mathbf{w}_{3} \times \mathbf{w}_{1})^{\mathsf{T}} \\ \mathbf{R}_{3}^{\mathsf{T}} = (\mathbf{w}_{3} + \mathbf{w}_{1} \times \mathbf{w}_{2})^{\mathsf{T}} \end{bmatrix}$$

- Due to the twofold ambiguity in the sign of \hat{E} and \hat{T} , there are four different estimates for the pair (\hat{T}, R)

Recovering the Pair $(\hat{\mathbf{T}}, R)$

- The 3-D reconstruction of the viewed points resolves the ambiguity and finds the only correct estimate
 - The third component of each point in the left reference frame is computed for each of the four pairs $(\hat{\mathbf{T}}, R)$: $\mathbf{P}_r = R(\mathbf{P}_l - \hat{\mathbf{T}}); \ \mathbf{p}_r = \frac{f_r}{Z_r} \mathbf{P}_r; \ Z_r = \mathbf{R}_3^{\mathsf{T}}(\mathbf{P}_l - \hat{\mathbf{T}}) \implies \mathbf{p}_r = \frac{f_r R(\mathbf{P}_l - \hat{\mathbf{T}})}{\mathbf{R}_3^{\mathsf{T}}(\mathbf{P}_l - \hat{\mathbf{T}})}$ $\Rightarrow x_r = \frac{f_r \mathbf{R}_1^{\mathsf{T}}(\mathbf{P}_l - \hat{\mathbf{T}})}{\mathbf{R}_3^{\mathsf{T}}(\mathbf{P}_l - \hat{\mathbf{T}})}; \ \mathbf{p}_l = \frac{f_l}{Z_l} \mathbf{P}_l \implies Z_l = f_l \frac{(f_r \mathbf{R}_1 - x_r \mathbf{R}_3)^{\mathsf{T}} \hat{\mathbf{T}}}{(f_r \mathbf{R}_1 - x_r \mathbf{R}_3)^{\mathsf{T}} \mathbf{p}_l}$ $\Rightarrow \mathbf{P}_l = \frac{(f_r \mathbf{R}_1 - x_r \mathbf{R}_3)^{\mathsf{T}} \hat{\mathbf{T}}}{(f \mathbf{R} - r \mathbf{R})^{\mathsf{T}} \mathbf{p}_l}; \ \mathbf{P}_r = R(\mathbf{P}_l - \hat{\mathbf{T}})$

Reconstruction Algorithm

Input: a set of corresponding points and an estimate \hat{E}

- 1. Recover the normalised translation vector $\widehat{\mathbf{T}}$
- 2. Recover the rotation matrix R
- 3. Reconstruct the coordinates Z_l and Z_r of each point
- 4. If the signs of Z_l and Z_r of the reconstructed points are:
 - (a) both negative for some point, change the sign of ${}^{\mathbf{T}}$ and go to 3
 - (b) one negative, one positive for some point, change the sign of each entry of $\stackrel{E}{E}$ and go to 2
 - (c) both positive for all points, exit

- No information on the intrinsic and extrinsic parameters
- Only n point correspondences, n > 8, are given
 - Thus the location of the epipoles is known
 - The accuracy of the reconstruction is affected by that of the algorithms computing the disparities, not by calibration
- The reconstruction is unique only up to an unknown projective transformation of the world
 - From 5 arbitrary scene points and the epipoles, the projection matrix of each camera is recovered up to this transformation; then the 3-D location of any point is found by triangulation

- Homogeneous 3-D / 2-D coordinates: $[X, Y, Z]^{\mathsf{T}} \Rightarrow [X, Y, Z, 1]^{\mathsf{T}}$ and $[x, y]^{\mathsf{T}} \Rightarrow [x, y, 1]^{\mathsf{T}}$
- Five points P₁,...,P₅ to be recovered from their left and right images, p₁,...,p₅ and p'₁,...,p'₅

- No three of them should be collinear and no four coplanar

- <u>Spatial projective transformation</u> is fixed if the destiny of 5 points is known: $M\mathbf{p}_i = \rho_i \mathbf{p}_i \ (\rho_i \neq 0; M$ the projection matrix)
 - Without losing generality, a projective transformation is set up to send these five points to $\mathbf{P}_1 = [1,0,0,0]^T$, $\mathbf{P}_2 = [0,1,0,0]^T$, $\mathbf{P}_3 = [0,0,1,0]^T$, $\mathbf{P}_4 = [0,0,0,1]^T$, $\mathbf{P}_5 = [1,1,1,1]^T$

- <u>Planar projective transformation</u> is fixed if the destiny of 4 points is known
 - A projective transformation is set up to send the first four \mathbf{p}_i to $\mathbf{p}_1 = [1,0,0]^T$, $\mathbf{p}_2 = [0,1,0]^T$, $\mathbf{p}_3 = [0,0,1]^T$, $\mathbf{p}_4 = [1,1,1]^T$
 - $\mathbf{p}_5 = [\alpha, \beta, \gamma]^T$ in this standard projective basis
 - The setups simplify the expression of the projection matrix M:

$$M\mathbf{P}_{i} = \rho_{i}\mathbf{p}_{i} \implies M = \begin{bmatrix} \rho_{1} & 0 & 0 & \rho_{4} \\ 0 & \rho_{2} & 0 & \rho_{4} \\ 0 & 0 & \rho_{3} & \rho_{4} \end{bmatrix} \implies M = \begin{bmatrix} \alpha\rho_{5} - \rho_{4} & 0 & 0 & \rho_{4} \\ 0 & \beta\rho_{5} - \rho_{4} & 0 & \rho_{4} \\ 0 & 0 & \gamma\rho_{5} - \rho_{4} & \rho_{4} \end{bmatrix}$$

- Projection matrices of the left and right camera are found up to the unknown parameters x, x': $M = \begin{bmatrix} \alpha x - 1 & 0 & 0 & 1 \\ 0 & \beta x - 1 & 0 & 1 \\ 0 & 0 & \gamma x - 1 & 1 \end{bmatrix}; x = \frac{\rho_5}{\rho_4}; M' = \begin{bmatrix} \alpha' x' - 1 & 0 & 0 & 1 \\ 0 & \beta' x' - 1 & 0 & 1 \\ 0 & 0 & \gamma' x' - 1 & 1 \end{bmatrix}; x' = \frac{\rho_5'}{\rho_4'}$

 - These parameters are computed using the projection centres \mathbf{O},\mathbf{O}' found as the null spaces of $M, M'(M\mathbf{O} = 0; M'\mathbf{O}' = 0)$ and the known location of the epipoles \mathbf{e} , \mathbf{e}' (as $M\mathbf{O}' = \sigma \mathbf{e}$; $M'\mathbf{O} = \sigma'\mathbf{e}'$ with $\sigma \neq 0$ and $\sigma' \neq 0$)
- Then any 3-D point is reconstructed using the projective rays through O, O'