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Preface

These lecture notes cover in brief the following topics:

• Chapter 1: Random Processes

• Chapter 2: Kalman Filtering

More detail can be found in many available books and journal articles on control
theory and signal processing.

Chapter1is based on the texts in [1, 2, 4, 7, 9]. Chapter 2 is based on the lecture
notes prepared in 1999 by Dr. Ram Kakarala and on the texts in [2, 3, 5, 6, 8].

The above-mentioned books and articles use different notation for the same quanti-
ties, so that it is little wonder that the notation below may differ from the one more
familiar to you. Sometimes, when this creates no difficulties, the same character
may denote different quantities, but in any case the notation involved is explicitly
explained in each section.
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Chapter 1

Random Signals and Processes

Basic goal of (digital) signal processing is to solve the following two problems:

1. to determine actual parameters of a signal distorted by noise or transmission
channel and

2. to find how characteristics of a channel effect signal parameters.

A temporal continuous signal is a real- or complex-valued oscillation in time f(t),
defined as a certain function of the continuous real time variable t. A spatial con-
tinuous signal is a real- or complex-valued oscillation f(v) in space, defined as a
certain function of the real spatial variable v. Continuous signals are frequently
referred to as analog signals if they have a continuum of values for each variable t or
v. Unless otherwise specified, we assume that signals are complex-valued variables
because complex-valued data are more and more extensively used in modern signal
processing.

A discrete signal is an arbitrary function f [n] that is a sequence of real- or complex-
valued numbers defined for all integer values n. A continuous time function f(t),
digitised at uniform intervals of T seconds, or a continuous spatial function g(v),
digitised at uniform linear space of V meters (or other spatial units), produce the
discrete sequences f [n] = f(nT ) and g[n] = g(nS), respectively.

We will denote continuous and discrete functions by parentheses () and brackets [] to
better discriminate between them and avoid ambiguities for continuous and discrete
functions denoted by the same letters.

A continuous or discrete signal that can take only a finite number of values (instead
of the continuum) for each time value t or space value s is called a digital signal. In
practice, the discrete signals are also the digital ones (we use analog-digital convert-
ers, or ADCs, to form the digital signals and then store them in a digital memory
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with a fixed word length).

Both useful signals and nuisance noise in signal processing are most frequently de-
scribed by probabilistic models of random (or stochastic) processes in time or space.
This is the only really fruitful way to describe noise or noiselike signals, and it begins
with a probabilistic description and then proceeds to derive the associated signal
parameters from the probabilistic model.

1.1 Probabilistic models: basic definitions

This section overviews in brief basic components of probabilistic description of ran-
dom signals. More in detail these topics are discussed in [2, 4, 9].

Let e be a discrete event that belongs to a finite set of possible outcomes of a random
experiment. Probability of the event, Pr(e), can be intuitively considered as the limit
of ratio of the number of the events e that actually happen to the total number of
experiments. It is evident that 0 ≤ Pr(e) ≤ 1.

Random variable X is a variable that randomly takes values x from a continuum
of possible values. Probabilities of different values are quantitatively described by a
probability distribution function F (x) = Pr(X ≤ x). It allows to define the probabil-
ity density function, or simply probability density,

p(x) =
dF (x)

dx
.

In the discrete case, a discrete random variable x takes values from a finite or
countable set of possible values, X = {x1, x2, . . .}. Each value xiis taken with a
probability p(xi), and the probability distribution is represented by the cumulative
probability function,

Pr(X ≤ x) =
∑
xi≤x

p(xi). (1.1)

Mathematical expectation, E{X}, of a random variable X is:

E {X} =

∞∫
−∞

xp(x)dx. (1.2)

It is called also the average, or mean value of the random variable X, or the first
moment of X. If the number of observations is growing, the average value of x in
the number of observations converges in a probabilistic sense to the mathematical
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expectation.

The mathematical expectation of a function of the random variable, e.g., the function
g(x), can be found using the probability density p(x) of a continuous variable:

E {g(X)} =

∞∫
−∞

g(x)p(x)dx (1.3)

or the probabilities p(xi) of a discrete variable:

E {g(X)} =
∑
x∈X

g(x)p(x). (1.4)

The mathematical expectation of the squared modulo of X,

E{|x|2} =

∞∫
−∞

|x|2p(x)dx, (1.5)

is called the mean square, or the second moment, of the random variable x.

Variance σ2 of the random variable x is the mean square deviation of this variable
from its mean value:

var{x} =

∞∫
−∞

|x− E {x} |2p(x)dx = E
{
|x|2

}
− |E {x} |2. (1.6)

The mean square and variance are the same only for a random variable with the
zero mean value.

An interrelation between two random variables is described by their covariance:

cov{xy} = E {(x− E {x})(y∗ − E {y}∗)}
=

∞∫
−∞

∞∫
−∞

(x− E {x})(y∗ − E {y}∗)p(x, y)dxdy

= E {xy∗} − E {x} E {y}∗
(1.7)

where p(x, y) is the joint probability density of the random variables x and y, and
E {xy} denotes the product second moment of these variables.

For simplicity, we will not use below the different notation X and x for the random
variable and its value, respectively.
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1.2 Uniform and Gaussian probability distribu-

tions

Most popular probability densities are the uniform and the Gaussian (normal) ones.
The uniform distribution of a real random variable x in a finite real interval a ≤ x ≤ b
is described by the uniform (constant) probability density

p(x) =
1

b− a
. (1.8)

The Gaussian distribution of a real random variable x having the mean value x̄ ≡
E {x} and the variance σ2 ≡ var{x} is described by the probability density

p(x) =
1√
2πσ

exp

(
− 1

2σ2 (x− x̄)2

)
(1.9)

for −∞ < x <∞.

The multivariate Gaussian probability density for a vector of K random variables
x = [x1, x2, . . . , xK ]T is as follows:

p(x) =
1√

(2π)K |CK |
exp

(
− 1

2
(x− x̄)TC−1

K (x− x̄)

)
. (1.10)

Here, x̄ is the K-element mean vector

x̄ = E {x} (1.11)

and CK is the K ×K covariance matrix

CK = E
{
(x− x̄)(x− x̄)T

}

=



var{x1} cov{x1x2} . . . cov{x1xK}
cov{x2x1} var{x2} . . . cov{x2xK}

. . . .

. . . .

. . . .
cov{xKx1} cov{xKx2} . . . var{xK}


.

(1.12)

The Gaussian probability density can also be defined for complex-valued random
variables. Let x = xr + jxi be a complex-valued random variable having the real, xr,
and the imaginary, xi, parts which are real random variables with the mean values x̄r

and x̄i, respectively, and the same variance, σ2
x

2
. The random variables xr and xi are

assumed to be statistically independent, that is, cov{xrxi} = 0. Then the Gaussian
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probability density of the complex-valued random variable can be represented as a
particular case of the bivariate Gaussian probability density of the two real random
variables:

x =

(
xr

xi

)
; x̄ =

(
x̄r

x̄i

)
; C2 =


σ2

x

2
0

0
σ2

x

2

 . (1.13)

By using these values in Eq. (1.10) for K = 2, one obtains after some simplification
that

p(x) = p(x) =
1

πσ2
x

exp

(
− 1

σ2
x

|x− x̄|2
)

(1.14)

where x̄ = E {x} = x̄r + jx̄i and var{x} = var{xr}+ var{xi} = σ2
x. The multivariate

Gaussian probability density for a vector x of K complex-valued random variables
can be represented as the multivariate Gaussian probability density for 2K real
random variables as follows:

p(x) =
1

πK |CK |
exp

(
−(x− x̄)HC−1

K (x− x̄)
)

(1.15)

where H denotes the Hermitian transposition (see Appendix B) and x̄ and CK are
the complex mean value and the Hermitian covariance matrix, respectively:

x̄ = E {x} ;

CK = E
{
(x− x̄)(x− x̄)H

}
.

(1.16)

Eq. (1.15) is derived under the assumption that real and imaginary components of
all complex-valued random variables xk in the complex-valued random vector x are
independent and have the same variances.

1.3 Deterministic and random processes

A signal is said to be deterministic if it is exactly predictable for the time of space
span of interest. Examples would be:

• x(t) = 10 sin(2πt) – Sine wave

• x(t) =

{
1 if t ≥ 0
0 if t < 0

– Unit step

• x(t) =

{
1− e−t if t ≥ 0
0 if t < 0

– Exponential response
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Such signal are functions in the usual mathematical sense: for each specified numer-
ical value t, the corresponding value of x is exactly determined.

In contrast with a deterministic signal, a random signal is not predictable in a
deterministic sense. Examples of random signals are

• X(t) = 10 sin(2πt + θ), where θ is a random variable uniformly distributed
between 0 and 2π.

• X(t) = A sin(2πt + θ), where θ and A are independent random variables with
known distributions.

Such signals are formally known as random or stochastic processes (both terms are
equivalent and may be used interchangeably).

Figure 1.1: Ensemble of sample realizations of a stochastic process.

An ensemble of similar random signals is obtained by sampling a stochastic process
at a particular point in time, say t1 (see Figure 1.1). It can be seen that a stochastic
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process is a set of random variabless that unfold in time (or space) in accordance
with some conceptual chance experiment. Each of the time signals so generated is
called a sample realization of the process. Samples of the individual signals at a
particular time t1 would then be sample realizations of the random variable x(t1).
Four of these are illustrated in Figure 1.1 as xA(t1), xB(t1), xC(t1), and xD(t1). By
sampling at a different time, say t2, we would obtain samples of a different random
variable x(t2) and so forth. Thus in this example an infinite set of random variables
is generated by the random process x(t).

In this example, we consider a continuous-time random process in that time evolves
in a continuous manner and the probability density function describing the ampli-
tude variations is also assumed to be continuous. However, stochastic processes may
also be discrete in either time (space) or amplitude.

One way to formally specify a stochastic process is to describe in detail its proba-
bilistic model, or the conceptual chance experiment giving rise to the process. Let
xi = x(ti); i = 1, . . . , k, be a shorthand notation for the sample values taken at the
successive times t1 < t2 < . . . < tk. Obviously, the first-order probability density
functions pxi

(x), i = 1, . . . , k, are important in describing the process because they
characterize somehow the process amplitude distribution. More detailed features of
the process are given by the joint densities relating any pair of random variables,
for example, px1x2(x1, x2), px1x3(x1, x3), and so forth. It is these density functions
that tell us something about how rapidly the signal changes with time, and these
eventually tell us something about the signal’s spectral content. Continuing on, the
third, fourth, and subsequent higher-order density functions provide even more de-
tailed information about the process in probabilistic terms. However, this leads to
a formidable description of the process, to say the least, because a k-variate density
function is required where k can be any positive integer.

Obviously, usually it is impossible to explicitly specify these k-order density func-
tions. Rather, this is done more subtly by providing enough information about the
process to enable one to write out any desired higher-order density function; but the
actual “writing it out” is usually not done. If so, the description is complete; if not,
it is incomplete to some extent, and radically different processes may fit the same
incomplete description.

1.3.1 Discrete stochastic processes

A discrete stochastic process is a set, or ensemble, of real or complex-valued dis-
crete sequences in time (or space) such that each sequence x[n] can be observed as
a result of a certain chance experiment. For each fixed time instant, n, the value
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x[n] over all the sequences in the set represents a random variable. Probability
that the values of x[n] are in a certain interval is given by the distribution function
F (α; n) = Pr(x[n] ≤ α) that depends on the observation time, n. The corresponding

probability density is p(α; n) = ∂F (α;n)
∂α

.

The mean, or expected, value of a stochastic process x[n] at the time instant n is
given by the relation

x̄[n] = E {x[n]} . (1.17)

The autocorrelation of a stochastic process at two different time instants n1 and n2

is

γxx[n1, n2] = E {x[n1]x
∗[n2]} . (1.18)

It is the so called “engineering” definition of autocorrelation proposed first by
N. Wiener. In statistics the autocorrelation is normalised so that its absolute value
lies between 0 and 1. The autocorrelation of a centered stochastic process x[n] with
the excluded mean value is called the autocovariance:

cxx[n1, n2] = E {(x[n1]− x̄[n1])(x
∗[n2]− x̄∗[n2])} . (1.19)

It can easily be shown that

cxx[n1, n2] = γxx[n1, n2]− x̄[n1]x̄
∗[n2]. (1.20)

If the mean value of a stochastic process is equal to zero for all n, then the autocor-
relation and autocovariance of the process coincide, that is,

cxx[n1, n2] = γxx[n1, n2].

Although both the terms “autocorrelation” and “autocovariance” are sometimes
used as synonyms, they are strictly identical only for the processes with zero mean
value.

Two different stochastic processes x[n] and y[n] are described by cross-correlation

γxy[n1, n2] = E {x[n1]y
∗[n2]} (1.21)

and cross-covariance

cxy[n1, n2] = E {(x[n1]− x̄[n1])(y
∗[n2]− ȳ∗[n2])}

= γxy[n1, n2]− x̄[n1]ȳ
∗[n2].

(1.22)
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Two stochastic processes are referred to as the uncorrelated ones if cxy[n1, n2] = 0
for all values n1 and n2.

The above definitions involve an explicit dependence of time index. A stochastic
process is wide-sense stationary if its mean value is constant for all the time indices,
that is, is independent of time, and its autocorrelation depends only on the difference
of time indices m = n2 − n1. Two stochastic processes are mutually wide-sense sta-
tionary if each process is wide-sense stationary and their cross-correlation depends
only on the difference of time indices.

Notice that the wide-sense stationary state is defined only in terms of the first and
second moments of stochastic processes and the higher-order moments are not con-
sidered. Therefore the theory of the wide-sense stationary stochastic processes is
actually the theory of the second-order processes.

Gaussian stochastic signals are specified as the signals such that all their joint proba-
bility distributions are the Gaussian distributions. Therefore in processing stochastic
signals that are specified only by their moments up to the second order (mean val-
ues and covariances) we can restrict our consideration only to Gaussian processes
because each given process can be replaced by the Gaussian process with the same
moments.

A stationary discrete stochastic process x[n] is specified statistically by the constant
mean value

x̄[n] = x̄, (1.23)

the autocorrelation sequence which is a function of the difference m between the
time indices:

γxx[m] = E {x[n]x∗[n + m]} , (1.24)

and the autocovariance sequence

cxx[m] = E {(x[n]− x̄)(x∗[n + m]− x̄∗} = γxx[m]− |x̄|2. (1.25)

Mutually stationary discrete stochastic second-order processes x[n] and y[n] are
specified statistically by the cross-correlation sequence which is a function of the
difference m between the time indices:

γxy[m] = E {x[n]y∗[n + m]} , (1.26)

and the cross-covariance sequence

cxy[m] = E{(x[n]− x̄)(y∗[n + m]− ȳ∗} = γxy[m]− |x̄||ȳ∗|. (1.27)
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The auto- and cross-correlation sequences have the following useful features:

γxx[0] ≥ |γxx[m]|;
γxx[−m] = γ∗xx[m];
γxx[0]γyy[0] ≥ |γxy[m]|2;
γxy[−m] = γ∗xy[m],

(1.28)

which hold for all integer values m.

The power density spectrum or spectral density function is defined as the discrete
Fourier transform (DFT) of the autocorrelation sequence:

Γxx(ω) = T
∞∑

m=−∞
γxx[m] exp(−jωmT ) (1.29)

where ω has the usual meanung of (2π)(frequency in hertz). This function describes
how the power of a stochastic process is distributed with frequency. The power
density spectrum has the limited bandwidth ± 1

2T
Hz and is a periodic function of

frequency with the period of 1
T

Hz. The inverse DFT

γxx[m] =

1
2T∫

− 1
2T

Γxx(ω) exp(jωmT )
dω

2π
(1.30)

allows to show that the autocorrelation with zero time shift m = 0 is as follows

γxx[0] =

1
2T∫

− 1
2T

Γxx(ω)
dω

2π
. (1.31)

It can be shown that the autocorrelation of Eq. (1.31) gives the average power of
the stochastic process. As follows from Eq. (1.31), the area under the curve Γxx(ω)
gives also the average power. Therefore, Γxx(ω) is the distribution of power as a
function of frequency. For this reason, Γxx(ω) is called the power density spectrum
(PDS) of the stochastic process.

The two Fourier transforms in Eqs. (1.29) and (1.30) are usually called the discrete-
time Wiener–Khinchine Theorem. Because γxx[−m] = γ∗xx[m], the PDS has to be
a strictly real positive function. If the autocorrelation sequence is a strictly real
function, then γxx[−m] = γ[m], and the PDS can be rewritten using the cosine
Fourier transform:

Γxx(ω) = 2T
∞∑

m=0

γxx[m] cos(ωmT )
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so that Γxx(ω) = Γxx(−ω), and the PDS is a symmetric function.

The cross-PDS of two mutually stationary processes x[n] and y[n] is defined as the
discrete-time Fourier transform of the cross-correlation sequence

Γxy(ω) = T
∞∑

m=−∞
γxy[m] exp(−jωmT ). (1.32)

Because γxy[−m] 6= γ∗xy[m], the cross-PDS is generally a complex-valued function.
But it holds that Γxy(ω) = Γ∗yx(ω).

1.3.2 White noise and white sequence

White noise is defined to be a stationary continuous random process having a con-
stant PDS:

Γww(ω) = C (1.33)

where C is the white-noise spectral amplitude. The term “white” is a carryover
from optics where white light contains all visible frequencies. The corresponding
autocorrelation function for white noise is then

γww(τ) = Cδ(τ) (1.34)

where δ(τ) is the delta-function. Because the PDS is constant for all frequencies
the white noise has infinite variance. Qualitatively, white noise is jumping around
infinitely far, infinitely fast! Obviously this is physically impossible, but it is a useful
abstraction: all physical systems are bandlimited to some extent, and a bandlimited
system driven by white noise yields a process that has finite variance; that is, the
end result makes sense.

Bandlimited white noise is a random process whose spectral amplitude is constant
over a finite range of frequencies, and zero outside that range. If the bandwidth
includes the origin (sometimes called baseband), then

Γww(ω) =

{
C if |ω| ≤ 2πW
0 if |ω| > 2πW

(1.35)

where W is the physical bandwidth in hertz (Hz). The corresponding autocorrelation
function is

γww(τ) = 2WC
sin(2πWτ)

2πWτ
(1.36)
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Figure 1.2: Baseband bandlimited white noise: autocorrelation function γww(τ) and
PDS Γww(jω).

Both the autocorrelation and spectral density functions for baseband bandlimited
white noise are sketched in Figure 1.2.

It is of interest to note that the autocorrelation function for baseband bandlimited
noise is zero for τ = 1

2W
, 2

2W
, 3

2W
, etc. Therefore if the process is sampled at a rate

of 2W samples per second (sometimes called the Nyquist rate), the resulting set of
random variables are uncorrelated. Since this usually simplifies the analysis, the
white bandlimited assumption is frequently made in bandlimited situations.

The frequency band for bandlimited white noise is sometimes offset from the ori-
gin and centered about some center frequency W0. It is easily verified that the
autocorrelation – PDS function pair is as follows:

Γww(ω) =

{
C if 2πW1 ≤ |ω| ≤ 2πW2

0 otherwise

γww(τ) = C

(
2W2

sin(2πW2τ)

2πW2τ
− 2W1

sin(2πW1τ)

2πW1τ

)

= 2C∆W
sin(π∆W τ)

π∆W τ
cos(2πW0τ)

(1.37)

where ∆W = W2 −W1 Hz and W0 = W1+W2

2
Hz. The bandlimited white noise has

a finite mean-square value, and thus it is physically plausible, whereas pure white
noise is not. However, the autocorrelation and spectral density functions in the
bandlimited case are more complicated than for pure white noise.

The analogous discrete-time process is referred to as a white sequence. A white
sequence is the stochastic process with zero mean value w[n] = 0 which is self-
uncorrelated under any time shift except for m = 0 when its variance is equal to σ2

w.
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The autocorrelation sequence of the white noise is

γww[m] = σ2
wδ[m] (1.38)

where δ[m] is the discrete delta-sequence (see Appendix ??). Therefore the PDS of
the autocorrelation sequence of the white noise satisfies the condition:

Γww(ω) = Tσ2
w, (1.39)

that is, it is constant for all the frequencies. If the random variables are also normal,
then the sequence is a Gaussian white sequence.

1.3.3 Gaussian random process

In the special case of the Gaussian or normal process an explicit probability density
description is both feasible and appropriate because all the density functions describ-
ing the process are normal in form. The random variables x = (x1, x2, . . . , xN)T are
said to be jointly normal or jointly Gaussian if their joint probability density func-
tion is given by

pX(x) =
1

(2π)
n
2 |C| 12

exp

(
− 1

2
(x− x̄)TC−1(x− x̄)

)
(1.40)

where x̄ and C are the mean vector and covariance matrix for x, respectively. The
superscripts T and −1 denote matrix transpose and inverse, respectively.

All we have to do is specify the vector random-variable mean and covariance matrix,
and the density function is specified. In the case of a Gaussian random process the
“variates” are the random variables xt1 , xt2 , . . . , xtk , where points in time may be
chosen arbitrarily. Thus enough information must be supplied to specify the mean
and covariance matrix regardless of the choice of t1, t2, . . . , tk.

A stationary Gaussian process has for each time index n the Gaussian probability
density of Eqs. (1.9) or (1.14) depending on whether it is a real-valued or complex-
valued process, respectively. The successive samples x[n], x[n+1], . . . , x[n+M ] will
have the joint probability density of Eqs. (1.10) or (1.15) depending on whether
these samples are real-valued or complex-valued, respectively. Let us consider, for
example, a complex-valued process with zero mean value. In this case a vector
x = (x[n] x[n + 1] . . . x[n + M − 1])T of the sequential samples has the following
joint probability density:

p(x) =
1

πM |CM |
exp

(
−xHC−1

M x
)

(1.41)
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where CM denotes the M ×M covariance matrix:

CM = γM =



γxx[0] γ∗xx[1] . . . γ∗xx[M − 1]
γxx[1] γxx[0] . . . γ∗xx[M − 2]

. . . .

. . . .

. . . .
γxx[M − 1] γxx[M − 2] . . . γxx[0]


(1.42)

which is the Hermitian autocorrelation one.

1.4 Discrete-time state model

Discrete-time processes may arise either naturally when a sequence of events takes
place in discrete steps (e.g., random walk) or from sampling a continuous process at
discrete times. Irrespective of how the discretization arises in a physical problem,
the discrete state model fits all situations into the following format:

xk+1 = Fkxk + wk;
yk = Bkxk

(1.43)

where the following notation is used:

xk is a vector state of the process at time tk, that is, xk = x(tk);

Fk is a matrix that relates xk to xk+1 in the absense of a forcing function (in the
sampled version of a continuous process this is the state transition matrix);

wk is a vector whose components are white sequences, and

Bk is a linear connection matrix between output yk and state xk.

A white sequence is a sequence of zero-mean random variables that are uncorrelated
timewise. However, the elements of wk may have a mutual nontrivial correlation at
any point in time tk. The covariance matrix associated with wk is assumed to be
known, and it will be denoted as Qk. Thus we have

E
{
wkw

T
i

}
=

{
Qk if i = k;
0 if i 6= k

(1.44)

where the superscript T denotes transpose.



Chapter 2

Kalman Filtering

In most signal-processing applications, the input-output relationship illustrated in
Figure 2 is important, e.g., filtering. In some situations, the inputs and outputs are
either not obvious or not of interest. For example, in tracking a moving object by
radar, we may be interested in monitoring how the object’s position and velocity
change over time, and not what causes the object to move. The approach usually
taken in tracking and navigation problems is the state-space approach, and the
solutions usually involve recursive filters known as the Kalman filters.

2.1 State-space modelling

Suppose that we are observing a process that is changing over time. At any given
instant, the process can be described by a vector of quantities that are collectively
called the state of the process. These quantities could be positions, velocities, tem-
peratures, etc. The evolution of the process over time can be represented as a
trajectory in the space of all possible states, as illustrated in Figure 2.1. Let us

-x[n]
H -y[n]

Figure 2.1: Input-output model

18
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x0
@

@
@Rx1

xk

Figure 2.2: Example of trajectory in state-space

denote the state of the process at any time k by an n× 1 vector xk, where

xk =


xk(1)
xk(2)

...
xk(n)


The components of xk are the quantities that collectively describe the process at
time k.

The observations that we are making of the process can be considered to be another
sequence of vectors, denoted yk. It may happen that the dimension of each yk is
m × 1, where m < n, the dimension of the state vectors. Generally, the problems
we consider in this chapter are those in which we are to estimate the states xk from
the observations yk.

If we know enough about the process, we could theoretically describe the evolution
of states:

xk+1 = ak(xk), for k = 0, 1, 2, . . .

Here the functions ak change one state into the next. If we understood the process
completely, then the functions ak(·) would be known, and we could determine the
entire trajectory starting from just x0. In most practical situations, we are not
entirely sure how one state changes into the next; the uncertainty may be modelled
by a random term uk as follows:

xk+1 = ak(xk) + uk. (2.1)

Here uk is a n× 1 vector of random components uk(1), uk(2), . . ., uk(n).

Suppose now that we represent the relationship between the observations yk and
the states as follows:

yk = ck(xk), for k = 0, 1, 2, . . .
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In most situations, we do not know what the measurement functions ck(·) are exactly,
or there may be noise affecting the accuracy the measurement. We can represent
either possibility with another random term:

yk = ck(xk) + vk. (2.2)

Here, vk is a m× 1 vector of random components.

An important special case of the model represented by Eqs. (2.1) and (2.2) is when
the functions ak(·) and ck(·) are linear. In this case, they may be represented by
matrices, producing the following model:

xk+1 = Akxk + uk,
yk = Ckxk + vk.

(2.3)

Each matrix Ak is n× n, and each Ck is m× n. These matrices may represent, for
example, linear approximations to the corresponding functions in (2.1) and (2.2).

2.1.1 Examples of state-space models

1. Suppose that we are observing a periodic signal in a noisy background. Let
us assume that the observations yk can be represented using a finite Fourier
series plus a noise term, as follows:

yk = c1e
j2πf1k + c2e

j2πf2k + · · ·+ cne
j2πfnk + uk.

Here the coefficients ci are complex numbers. The evolution of the periodic
function represented by the complex-exponentials can be described by letting
each frequency be the component of a state. Let us define

xk =


ej2πf1k

ej2πf2k

...
ej2πfnk

 .

The evolution of the states is then derived by noticing that

xk+1(i) = ej2πfi(k+1) = ej2πfiej2πfik = ej2πfixk(i).

Therefore, we can write

xk+1 = Akxk
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where Ak is the diagonal matrix

Ak =


ej2πf1 0 . . . 0

0 ej2πf2 . . . 0
...

. . .
...

0
... 0 ej2πfn

 .

The observation can now be written as

yk = Ckxk + vk

where Ck is the 1× n vector

Ck = [c1 . . . cn].

In this problem there is no uncertainty in the state evolution, so uk ≡ 0.

2. Suppose that an airplane is flying directly away from an airport. The distance
d from the airport to the plane is measured by radar. The pilot aims to
keep the plane flying at a constant velocity V , but a slight and unpredictable
headwind makes this difficult. If dk denotes the distance at time k, and vk the
velocity, then clearly

dk+1 = dk + vk∆t,

where ∆t is the difference in time between states (in seconds). The velocity vk

changes by an unpredictable amount due to the headwind, and therefore the
change may be represented by a random term wk. If we let the state xk of this
process be described by a 2-dimensional vector whose entries are xk(1) = dk

and xk(2) = vk, then the transition of states can be described as follows:[
xk+1(1)
xk+1(2)

]
=

[
1 ∆t
0 1

] [
xk(1)
xk(2)

]
+

[
0
wk

]
.

Here, the random term wk affects only the velocity vk. We may suppose
v0 = V , the desired velocity, and that the probability density of the changes
wk due to the headwind to be centered at zero. The measurements zk coming
from the radar indicate the time delay between the emission of the radar pulse
and its return. Since the time delay is obtained as the total distance travelled
by the pulse 2dk divided by the speed of propagation c, we may write

yk = Ckxk + vk,

where vk represents noise due to ground clutter or other factors, and

Ck =
[
2

c
0
]
.
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2.2 Determining states from observations

The general problem that we now consider, which arises in tracking, navigation, and
related applications, is how to estimate the states xk from the observations yk. We
may suppose that we have a computer with memory, so all past observations y0,
y1, . . ., yk are retained, and can be accessed to produce the estimate of xk. The
estimate is henceforth denoted x̂k. The goal is to produce estimates x̂k that are as
close as possible to the states in the sense of minimizing the average value of the
error:

n∑
i=1

|xk(i)− x̂k(i)|2 . (2.4)

This problem was considered by Rudolf E. Kalman in 1960, and his elegant solution
using a recursive filter has come to be known as the Kalman filter [5, 6]. Today, the
Kalman filter is used in hundreds of applications ranging from automobile suspension
systems to automatic speech recognition.

Matrix and vector notation

Some basic notation (see also Appendix B) is important to describe Kalman’s so-
lution. An n-dimensional vector x is represented as a column of n components
x(1), . . ., x(n), which we take to be generally complex-valued. The conjugate or
Hermitian transpose of x, denoted xH , is the 1 × n row vector of conjugate entries
[x∗(1), . . . , x∗(n)], where the asterisk (∗) means complex-conjugate. The inner prod-
uct between two vectors x and y of the same dimension is xHy, or in terms of their
components,

xHy =
n∑

i=1

x∗(i)y(i).

Two vectors are perpendicular if xHy = 0. The length of a vector, denoted ‖x‖, is
computed by the formula

‖x‖ =
√

xHx.

The measure of error in Eq. (2.4) can therefore be written as

‖x− x̂‖2.

The entries in an m× n matrix A are written A(k, `), where 1 ≤ k < m denote the
row number and 1 ≤ ` ≤ n denotes the column number. If the conjugate transpose
operation H is applied to an m × n matrix A, then the result, denoted AH is an
n×m matrix, whose rows are the columns of A conjugated:

AH(k, `) = A∗(`, k).
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Note the law of composition for H: for matrices A and B, we have

(AB)H = BHAH .

Given a n× 1 vector x, and a m× 1 vector y, the outer product xyH is the n×m
matrix whose entries are as follows:

xyH =


x(1)
x(2)

...
x(n)


[

y∗(1) y∗(2) · · · y∗(m)
]

=


x(1)y∗(1) x(1)y∗(2) · · · x(1)y∗(m)
x(2)y∗(1) x(2)y∗(2) · · · x(2)y∗(m)

...
...

...
...

x(n)y∗(1) x(n)y∗(2) · · · x(n)y∗(m)

 .

Probability concepts

The average or expected value of a random variable x is the integral

E {x} =

∞∫
−∞

x p(x) dx

where p(·) is the probability density function (p.d.f.) of x. The correlation between
two variables x and y is obtained from their joint p.d.f. p(x, y):

E {xy∗} =

∞∫
−∞

xy∗ p(x, y) dxdy

The expected value of a vector x of random variables is another vector obtained by
applying the expectation to each of its components x(1), . . ., x(n). The expected
value of a matrix A is the matrix of entries E {A(k, `)}.

The expected value of the sum x+y of two vectors is the sum of the expected values:

E {x + y} = E {x}+ E {y} .

The expected value of the outer product matrix xyH of two vectors x and y is the
matrix of entries E {x(k)y∗(`)}. This matrix is called the correlation matrix of x
and y. The correlation matrix of the error xk − x̂k in Eq. (2.4) is the matrix

E
{
(xk − x̂k)(xk − x̂k)

H
}

.

A pair of vectors x and y are called uncorrelated if E
{
xyH

}
= 0, where 0 is the

matrix of appropriate dimensions whose entries are all zero.
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2.2.1 Kalman’s solution

Kalman’s solution [5, 6] for estimating the states xk starts with the linear recursive
model given by Eq. (2.3). Suitable values are chosen for x̂0 and P0 (this correlation
matrix will be specified later); these are often guesses when no information is avail-
able. In addition, certain assumptions are made about the random elements in the
model. First, it is assumed that the uncertainty u is completely uncorrelated with
measurement noise v. Second, it is assumed that the uncertainty uk is not corre-
lated with u` for different instants k and `. The same assumption is also made on
measurement noise vk. These assumptions are listed in mathematical form below:

E
{
uku

H
`

}
=

{
Uk, k = `
0, k 6= `

E
{
vkv

H
`

}
=

{
Vk, k = `
0, k 6= `

E
{
ukv

H
`

}
= 0, for all k, `.

(2.5)

It is assumed that the correlation matrices Uk and Vk are known for all k. With
these assumptions, the problem is to provide an estimate x̂k from the observations
y0, . . ., yk to minimize the mean error

E
{
‖xk − x̂k‖2

}
. (2.6)

To make the solution easy to compute, the estimates should be linearly dependent
on the observations, i.e., for all k,

x̂k =
k∑

i=0

Giyi.

Here the terms Gi are n×m matrices. The goal is then to determine the matrices
to minimize Eq. (2.6).

Kalman made a brilliant observation about the solution: Since the states are
evolving recursively by Eq. (2.3), so should their estimates. Suppose we
have constructed an optimal linear estimate x̂k−1, based on observations y0, . . .,
yk−1. Then we may apply the state-transition matrix Ak−1 in Eq. (2.3) to construct
the vector

x̂i
k

def
= Ak−1x̂k−1. (2.7)

The lefthand side represents the natural evolution of the estimate x̂k−1 by the sys-
tem dynamics of Eq. (2.3). The superscript i is given to suggest that this is an
“intermediate” estimate before constructing x̂k. In other words, x̂i

k is our best guess



A/Prof. Georgy Gimel’farb 25

of x̂k from just the observations y0, . . ., yk−1, i.e., before actually making the obser-
vation yk at time k. From this vector, we can also make a prediction of yk before
we actually measure it; by Eq. (2.3) this is the vector

Ckx̂
i
k.

Kalman noted that the optimal solution for x̂k should then be a linear combination
of x̂i

k and the difference between the actual value of yk and our prediction of it.
Mathematically this gives the formula

x̂k = x̂i
k + Gk

(
yk −Ckx̂

i
k

)
. (2.8)

To understand this formula, notice that if the term in parentheses (· · ·) is zero, then

x̂k = x̂i
k = Ak−1x̂k−1,

which means that the estimate is evolving purely by what we know about the process.

The n ×m matrix Gk in Eq. (2.8) is called the gain matrix at time k. To find the
optimal gain matrix, we substitute for x̂k in Eq. (2.6). The problem then becomes
one of finding Gk to minimize the error

E
{
‖(xk − x̂i

k)−Gk

(
yk −Ckx̂

i
k

)
‖2
}

. (2.9)

Essentially, this means taking the derivative of Eq. (2.9) with respect to the entries
of the matrix Gk and setting the resulting nm equations to zero to find the solution.
The solution is described by the following theorem.

Theorem 1 Let a, b be random vectors. Then the optimal choice of matrix G to
minimize

E
{
‖a−Gb‖2

}
(2.10)

is given by the formula

G = E
{
abH

} (
E
{
bbH

})−1
, (2.11)

where it is assumed that the correlation matrix E
{
bbH

}
is invertible.

To understand this result, note that if a = b, then G = I (the identity matrix),
which makes sense. The proof of this theorem is given in Section 2.2.3.

To apply Theorem 1, let a = xk − x̂i
k, and b = yk −Ckx̂

i
k. Then

E
{
abH

}
= E

{
(xk − x̂i

k)(yk −Ckx̂
i
k)

H
}

.
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Substituting for yk from Eq. (2.3), one obtains

E
{
abH

}
= E

{
(xk − x̂i

k)(Ckxk + vk −Ckx̂
i
k)

H
}

.

Rearranging terms, we obtain

E
{
abH

}
= E

{
(xk − x̂i

k)(xk − x̂i
k)

HCH
k

}
+E

{
(xk − x̂i

k)v
H
k

}
.

Because x̂i
k depends only on y0, . . ., yk−1, and therefore includes only the noise

terms vi for i < k, and uncertainties ui for i ≤ k, we can apply the assumptions
of Eq. (2.5) to see that the second expectation on the right is zero. (We are taking
advantage of the fact that the “new” noise vk is uncorrelated with the “old” noise
vi, i < k, and also uncorrelated with the system’s uncertainty ui). Therefore, we
obtain

E
{
abH

}
= E

{
(xk − x̂i

k)(xk − x̂i
k)

H
}
CH

k ,

where we pull CH
k out of the expectation because it is not random. We introduce the

term Pi
k to denote the correlation matrix on the right side, and write the equation

above as simply

E
{
abH

}
= Pi

kC
H
k . (2.12)

The matrix Pi
k is the correlation matrix for the error xk− x̂i

k. Similar considerations

lead to a simple form for E
{
bbH

}
; with Pi

k as in the previous paragraph, we obtain
that

E
{
bbH

}
= CkP

i
kC

H
k + Vk. (2.13)

Here, Vk is measurement noise correlation matrix defined in Eq. (2.5).

Exercise 1 Prove Eq. (2.13) by following the method used for E
{
abH

}
.

Now applying Theorem 1, we find that by Eqs. (2.12) and (2.13) the optimal choice
for the gain matrix Gk is

Gk = Pi
kC

H
k

(
CkP

i
kC

H
k + Vk

)−1
, (2.14)

where it is assumed that the inverse on the right hand side exists. Every matrix
in this equation is known except the correlation matrix Pi

k. Is there some way
to compute this recursively, starting from the matrix P0, which is assumed to be
known? Kalman showed that there is, as follows since by definition

Pi
k = E

{
(xk − x̂i

k)(xk − x̂i
k)

H
}

(2.15)



A/Prof. Georgy Gimel’farb 27

By Eq. (2.3), we can substitute xk = Ak−1xk−1 + uk−1 and get that

Pi
k = E

{
(Ak−1xk−1 + uk−1 − x̂i

k)(Ak−1xk−1 + uk−1 − x̂i
k)

H
}

.

Now substitute from Eq. (2.7) for x̂i
k to get that

P i
k = E {(Ak−1xk−1 + uk−1 −Ak−1x̂k−1)(Ak−1xk−1 + uk−1 −Ak−1x̂k−1)} .

Some rearrangement gives

P i
k = Ak−1E

{
(xk−1 − x̂k−1)(xk−1 − x̂k−1)

H
}
AH

k−1

+ E
{
uk−1(xk−1 − x̂k−1)

H
}
AH

k−1

+ Ak−1E
{
(xk−1 − x̂k−1)u

H
k−1

}
+ E

{
uk−1u

H
k−1

}
.

It is possible to see that the middle two expectations are zero by the assumptions
made in Eq. (2.5). Defining Pk−1 to be the correlation matrix in the first term, we
obtain that

Pi
k = Ak−1Pk−1A

H
k−1 + Uk−1, (2.16)

where Uk−1 is the correlation matrix defined in Eq. (2.5).

This derivation suggests that Pi
k can be obtained if Pk−1 is known. Since we start

with P0 being known, we can get Pi
1 from Eq. (2.16). But to calculate Pi

2, we
need P1. In general, we need another recursive formula to calcuate Pk once Pi

k is
obtained. Kalman derived this too:

Pk = Pi
k −GkCkP

i
k. (2.17)

This is derived by starting from the definition

Pk = E
{
(xk − x̂k)(xk − x̂k)

H
}

,

substituting (2.8) with (2.14) for Gk, and some amount of algebra!

2.2.2 Putting it all together

Now we are in a position to see how the iteration in the Kalman filter works. First,
we choose suitable values for x̂0 and P0. Then since P0 is known, we calculate Pi

1

by Eq. (2.16). This then gives G1 by Eq. (2.14). Now, x̂i
1 is obtained by Eq. (2.7),

and then the complete estimate x̂1 by Eq. (2.8). Simultaneously, we can get P1 from
Eq. (2.17). The process of finding x̂2 is similar, starting from x̂1 and P1. To find
each estimate x̂k, we need x̂k−1 and Pk−1. The process is illustrated in the flowchart
shown in Figure 2.2.2.
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Set k = 0, and choose x̂0 and P0

?

k ← k + 1

?

x̂i
k = Ak−1x̂k−1; Pi

k = Ak−1Pk−1A
H
k−1 + Uk−1

?

Gk = Pi
kC

H
k (CkP

i
kC

H
k + Vk)

−1

?

x̂k = x̂i
k + Gk(yk −Ckx̂

i
k); Pk = Pi

k −GkCkP
i
k

�

Figure 2.3: Flowchart of Kalman filter algorithm.
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Examples

1. Suppose that we have an onedimensional process where the state is not chang-
ing, but the measurements are corrupted by noise.

xk+1 = xk

yk = xk + vk.

We assume that E {vk} = 0 and E {v2
k} = σ2 for all k, and furthermore

E {x0} = 0 and that E {x2
0} = µ2 = P0. Let us derive the Kalman filter

equations for this model. The assumptions mean that Ak = Ck = 1 for all k,
and furthermore that Uk = 0 and Vk = σ2 for all k. From the flowchart we see
that x̂i

k = x̂k−1, and furthermore, we obtain that P i
k = Pk−1 for all k. In other

words, the intermediate steps are not necessary here, because the state is not
changing. Therefore from Eq. (2.14) we get that

Gk =
Pk−1

Pk−1 + σ2
. (2.18)

This means from Eq. (2.17) with Gk as in Eq. (2.18) that

Pk = Pk−1 −
P 2

k−1

Pk−1 + σ2
=

Pk−1σ
2

Pk−1 + σ2
. (2.19)

Also, the estimate x̂k is simply

x̂k = x̂k−1 +
Pk−1

Pk−1 + σ2
(yk − x̂k−1) . (2.20)

To understand this recursion, consider the special case when σ = 0, i.e., there
is no measurement noise. Then x̂0 = 0, and by Eq. (2.20), x̂1 = y1, x̂2 = y2,
. . .; therefore, the estimates are simply the observations here, which is reason-
able. Now suppose σ > 0, but µ = 0, so that xk is known to be 0 for all k.
Then we would expect that all estimates equal x0, because the states are not
changing. Indeed, this is what happens, as by Eqs. (2.18) and (2.19) we get
G1 = 0, P1 = 0, and therefore x̂1 = 0; continuing, we see that Pk = 0 for all k,
and therefore by Eq. (2.20) that x̂k = 0 for all k. The estimates are constant
here, even though the measurements zk are randomly changing.

Now suppose that both µ > 0 and σ > 0. From (2.19) it can be seen that
Pk < Pk−1, i.e., that the error variance is always decreasing. In fact, it can be
seen from Eq. (2.19) that the factor of reduction is

Pk

Pk−1

=
σ2

Pk−1 + σ2
< 1.
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Since P0 > 0, this recursion has the limit limk→∞ Pk = 0. This means that the
estimate (2.20) changes by less and less each time, so that for k large enough,
x̂k is essentially constant. This is again reasonable, because the state xk itself
is not changing.

2. Tracking a moving object. Suppose we have an object moving with an un-
known velocity and acceleration. The position of the object is measured by
radar, but background noise prevents this measurement from being exact. We
now derive the Kalman filter for tracking this object from the noisy position
measurements.

Suppose for simplicity that the object moves in one dimension only. The
three-dimensional case is similar, only requiring somewhat more cumbersome
notation. The position of the object at any time t, where t is now measured
continuously, is not in general a linear function of t. Let us expand the position
function, denoted x(t), in a Taylor series. For small h, we can write

x(t + h) ≈ x(t) + hx′(t) +
h2

2
x′′t. (2.21)

This equation shows the relationship between position at a future time, cur-
rent position x(t), velocity x′(t), and acceleration x′′(t). We make a discrete
approximation to this and construct a state-space model as follows. Let xk be
a 3 × 1 state vector whose entries are xk(1) = x(k) (position), xk(2) = x′(k)
(velocity) and xk(3) = x′′(k) (acceleration). We may apply Eq. (2.21) to obtain
this recursion for position:

xk+1(1) = xk(1) + hxk(2) +
h2

2
xk(3). (2.22)

A similiar recursion for velocity can be obtained by differentiating Eq. (2.21)
with respect to h; this yeilds

x′(t + h) = x′(t) + hx′′(t). (2.23)

In discrete form, this is

xk+1(2) = xk(2) + hxk(3). (2.24)

A similar analysis gives

xk+1(3) = xk(3). (2.25)
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Putting Eqs. (2.22), (2.24), and (2.25) together yields the matrix equation xk+1(1)
xk+1(2)
xk+1(3)

 =

 1 h h2

2

0 1 h
0 0 1


 xk(1)

xk(2)
xk(3)

 . (2.26)

If we let Ak denote the 3 × 3 matrix above, we obtain the process equation
in Eq. (2.3), with the vector uk of random terms denoting the uncertainty as
to how the object’s trajectory is evolving. The measurement of Eq. (2.3) is
simple to derive; with Ck = [1, 0, 0], the observation zk contains only the noisy
measurement of position xk(1).

The Kalman filter equations are easy to write down following the recipe given
in Figure 2.2.2.

2.2.3 Appendix: proof of Theorem 1

Expanding Eq. (2.10) gives

E
{
‖a−Gb‖2

}
= E

{
(a−Gb)H(a−Gb)

}
= E

{
(aH − bHGH)(a−Gb)

}
= E

{
aHa− bHGHa− aHGb + bHGHGb

}
= E

{
aHa

}
− E

{
bHGHa

}
− E

{
aHGb

}
+ E

{
bHGHGb

}
.

Differentiating this with respect to G may seen difficult because G is a matrix, and
both G and GH are appearing. To make it easier, we can treat the elements of G
as independent from the elements of GH . They are not of course, but it is a math-
ematical fact (which we won’t prove) that the same result is obtained by treating
them independently.

The rule for differentiating with respect to matrices is as follows [2]. If x, y are
arbitrary vectors, and A is a matrix, then

∂

∂A
xHAy = yxH .

The right hand side is a matrix with the same dimension as A, and its i, j-th entries
are precisely the entries obtained by differentiating the scalar xHAy with respect
to the i, j-th entry aij of A.
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Using this rule, and differentiating the expression above with respect to GH and
setting the result equal to zero, we get an equation involving only G:

−E
{
abH

}
+ G E

{
bbH

}
= 0.

Solving, this gives

G = E
{
abH

} (
E
{
bbH

})−1
.

2.2.4 Kalman vs. Wiener filtering

Let a stochastic discrete-time linear system be given by the following equations that
specify the state vector x and the output vector y:

x[n + 1] = Anx[n] + u[n]; y[n] = Cnx[n] + w[n].

Let the matrices An and Cn specifying the system be known. Let the state noise
u[n] and the observation noise v[n] be the zero-mean vector white–noise processes
(E {u[k]} = E {v[k]} = 0 with known covariance matrices:

E
{
u[k]uH [l]

}
= Ukδ(k − l); E

{
v[k]vT [l]

}
= Vkδ(k − l).

Let the initial state x[0] be a random zero-mean vector (E {x[0]} = 0) with known
covariance matrix P0. Let the initial state, state noise, and observation noise be
mutually uncorrelated.

Figure 2.4: Kalman filter.

Then the linear unbiased least mean square estimate of the system is given by the
following recurrent filtering algorithm:

x̂[n + 1] = An (x̂[n] + Gn (y[n]−Cnx̂[n]))
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where the gain matrix Gn and the correlation matrices Pn and Pi
n of the errors are

changing in time as follows:

Gn = Pi
nC

H
n

(
CnP

i
nC

H
n + Vn

)−1
;

Pn = Pi
n −GnCnP

i
n;

Pi
n+1 = AnPnA

H
n + Un.

(2.27)

Just as Wiener filtering of stationary random processes, Kalman filtering minimizes
the total square error, but in contrast to the former it need not simultaneously
process all the input and output data samples but instead it permits to sequentially
process the data samples. Kalman filtering can also be used for system identification,
for example, to estimate the unknown matrices Bn in the more complex linear system
model

x[n + 1] = Anx[n] + Bnu[n]; y[n] = Cnx[n] + v[n]

where u[n] is the known input sequence of finite energy.
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Appendix A

Complex variables and functions

A complex number has a real part and an imaginary part, both of which are con-
stants. If the real part and/or imaginary part are variables, a complex number is
called a complex variable. In the Laplace transform a complex variable is denoted
s = σ + jω where σ and ω are the real part and the imaginary part, respectively.

Basic definitions:

• j =
√
−1 is the imaginary unit (j2 = −1);

• if s = x + jy is the complex number or variable then x = <(s) and y = =(s)
are the real and imaginary parts, respectively:

• s∗ = x− jy is the complex conjugate of s;

• r ≡ |s| =
√

x2 + y2 denotes the magnitude of s;

35
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• φ ≡ arc s = tan−1(y/x) denotes the phase of s.

A complex function F (s) = Fx + jFy has a real part Fx and an imaginary part

Fy where Fx and Fy are real quantities. The magnitude of F (s) is
√

F 2
x + F 2

y , and

the angle, or phase θ of F (s) is tan−1(Fy/Fx). The angle is measured counterclock-
wise from the positive real axis. The complex conjugate of F (s) is F ∗(s) = Fx−jFy.

Complex functions in linear control systems analysis are commonly single-valued
functions of s and are uniquely determined for a given value of s.

A complex function F (s) is analytic in a region if F (s) and all its derivatives exist
in that region. The derivative of an analytic function F (s) is given by

d

ds
F (s) = limit

∆s→0

F (s + ∆s)− F (s)

∆s
= limit

∆s→0

∆F
∆s

Since ∆s = ∆σ + j∆ω, ∆s can approach zero along an infinite number of different
paths. It can be shown that if the following two Cauchy–Riemann conditions

∂Fx

∂σ
=

∂Fy

∂ω
and

∂Fy

∂σ
= −∂Fx

∂ω

are satisfied, then the derivative dF (s)
ds

is uniquely determined, and the function F (s)
is analytic.

Example A.1 Let F (s) = 1
s+1

. Then

F (σ + jω) =
1

σ + 1 + jω
= Fx + jFy

where

Fx =
σ + 1

(σ + 1)2 + ω2
and Fy =

−ω

(σ + 1)2 + ω2

It can be seen that, except at s = −1 (that is, σ = −1 and ω = 0, the function F (s)
satisfies the Cauchy–Riemann conditions:

∂Fx

∂σ
= ∂Fy

∂ω
=

ω2 − (σ + 1)2

((σ + 1)2 + ω2)2

∂Fy

∂σ
= −∂Fx

∂ω
=

2ω(σ + 1)

((σ + 1)2 + ω2)2
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Hence F (s) = 1
s+1

is analytic in the entire s plane except at s = −1. The derivative
dF (s)

ds
, except at s = −1, is found to be

d
ds

F (s) = ∂Fx

∂σ
+ j ∂Fy

∂σ
= ∂Fy

∂ω
− j ∂Fx

∂ω

= − 1
(σ+1+jω)2

= − 1
(s+1)2

Note that the derivative of an analytic function can be obtained simply by differen-
ciating F (s) with respect to s. In this example,

d

ds

(
1

s + 1

)
= − 1

(s + 1)2

Poles and zeros. Points in the s plane at which the function F (s) is analytic are
called ordinary points, while points in the s plane at which the function F (s) is not
analytic are called singular points. Singular points at which the function F (s) or its
derivatives approach infinity are called poles. In the previous example, s = −1 is a
singular point and is a pole of the function F (s).

If F (s) approaches infinity as s approaches −p and if the function F (s)(s + p)n has
a finite, nonzero value at s = −p for n = 1, 2, 3, . . ., then s = −p is called a pole of
order n. If n = 1, the pole is called a simple pole. If n = 2, 3, . . ., the pole is called a
second-order pole, a third-order pole, and so on. Points at which the function F (s)
equals zero are called zeros.

Example A.2 Let us consider the complex function

F (s) =
K(s + 2)(s + 10)

s(s + 1)(s + 5)(s + 15)2

This function has zeros at s = −2, s = −10, simple poles at s = 0, s = −1, s = −5,
and a second-order pole (multiple pole of order 2) at s = −15. Note that F (s)
becomes zero at s = ∞. Since for large values of s this function is approximately
equal to

F (s) ≈ K

s3

F (s) possesses a triple zero (multiple zero of order 3) at s =∞. If points at infinity
are included, this function has the same number of poles as zeros, namely, five zeros
(s = −2,−10,∞,∞,∞) and five poles (s = 0,−1,−5,−15,−15).



Appendix B

Complex-valued vectors and
matrices

A vector-column is the (m× 1)-matrix:

c =


c1

.

.

.
cm

 .

The vector-row is obtained by simply transposing the vector-column:

(c1 . . . cm) = cT .

Let the superscript ∗ denote the complex conjugate:
if z = xr + jxi then z∗ = xr − jxi.

The inner product of two complex-valued (m × 1)-vectors is defined as the dot
product:

< w,v >= wHv =
m∑

i=1

w∗
i vi .

The outer product wvH of the two (m× 1)-vectors is the square (m×m)-matrix:

wvH =



w1v
∗
1 w1v

∗
2 . . . w1v

∗
m

w2v
∗
1 w2v

∗
2 . . . w2v

∗
m

. . .

. . .

. . .
wmv∗1 wmv∗2 . . . wmv∗m


.

38



A/Prof. Georgy Gimel’farb 39

The scalar non-negative vector length, or norm, can be defined as ‖ v ‖=< v,w >
1
2 ,

that is,

‖v‖ =

(
m∑

i=1

|vi|2
) 1

2

.

The Hermitian transposed, or adjoint, matrix that corresponds to a complex-valued
(m× n)-matrix

A =



a1,1 a1,2 . . . a1,m

a2,1 a2,2 . . . a2,m

. . .

. . .

. . .
an,1 an,2 . . . an,m


is the (n×m)-matrix AH obtained by replacing all the elements of A with their com-
plex conjugate values and transposing the obtained matrix (that is, AH = (AT )∗ =
(A∗)T ):

AH =



a∗1,1 a∗2,1 . . . a∗m,1

a∗1,2 a∗2,2 . . . a∗m,2

. . .

. . .

. . .
a∗1,n a∗2,n . . . a∗m,n


Here, the Hermitian conjugation is denoted by the superscript H. In the similar
way to transposition, it is easily shown that

(A + B)H = AH + BH

(AB)H = BHAH

A square (m×m)-matrix A is symmetric if A = AT so that the elements ak,l = al,k

are symmetric with respect to the main diagonal containing the elements ak,k; k =
1, . . . ,m. A simple example of the symmetric (4× 4)-matrix is as follows:

S =


s1,1 s1,2 s1,3 s1,4

s1,2 s2,2 s2,3 s2,4

s1,3 s2,3 s3,3 s3,4

s1,4 s2,4 s3,4 s4,4


A square complex-valued (m×m)-matrix A is Hermitian if A = AH .



Appendix C

Fourier and Laplace transforms

C.1 Fourier spectrum

Each real- or complex-valued function f(t) can be expanded into the following
complex-valued Fourier series:

f(t) =
∞∑

n=−∞
cnejnt

cn =
1

2π

π∫
−π

f(t)e−jntdt; (n = 0;±1,±2, . . .)

For the real-valued function f(t), the coefficient c0 is also real-valued, and the coef-
ficient c−n = c∗n so that

f(t) = c0 +
∞∑

n=1

cnejnt + c∗ne−jnt = c0 + 2
∞∑

n=1

<(cnejnt)

= r0 + 2
∞∑

n=1

<(rnej(nt−φn))

= r0 + 2
∞∑

n=1

rn cos(nt− φn)

The term cnejnt where cn = rne−jφn means the complex oscillation with the cyclic
frequency n, magnitude rn = |cn|, and initial phase −φn = arc cn.

A set of the successive values cn is called the Fourier spectrum of the function f(t).

40
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Each exponential function ejnt represents in the complex plane the movement of the
complex point ejnt along the unit circle with the cyclic frequency n = 0,±1,±2, . . ..
The point ejnt runs around the unit circle n times for t = 2π time units, the move-
ment being clockwise if the frequency is positive and counterclockwise if it is nega-
tive.

Such a movement around the origin in the complex plane can be considered as a
complex oscillation with the positive or negative cyclic frequency, depending on
the direction of movement.

Let a function f(t) be defined over the interval (−π, π) and let it be extended
periodically outside this range. Then its spectrum (cn : n = 0,±1,±2, . . .) with
respect to the set of oscillations ejnt completely specifies the function. Most of
physical phenomena described by the function f(t) are much more obvious in terms
of these oscillations.

C.2 Fourier integral

Let the physical phenomenon under consideration be non-periodical, that is, let the
function f(t) be defined for all t such that −∞ < t < ∞. Then this function can
be represented by the following Fourier integral (under certain conditions yielding
that this integral exists):

f(t) =

∞∫
−∞

F (y)ejytdy where F (y) =
1

2π

∞∫
−∞

f(t)e−jytdt

This integral is called a spectral density of the function f(t).

The function F (y) relates to the above Fourier coefficients cn where the integer
variable n is replaced by the continuous variable y. The value r(y) = |F (y)| is called
the magnitude density, and the initial phase is arc F (y).
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Example 1: the spectral density of the rectangular pulse

f(t) =

{
A if |t| ≤ τ
0 if |t| > τ

F (y) =
1

2π

τ∫
−τ

Aejytdt =
A

2π

ejyτ − e−jyτ

jy
=

A

π

sin τy

y

Example 2: the spectral density of the decreasing exponential function:

f(t) = e−|t|

F (y) =
1

2π

∞∫
−∞

e−jyte−|t|dt =
1

2π

∞∫
0

(
ejyt + e−jyt

)
e−tdt

=
1

2π

∞∫
0

e−t cos yt dt =
1

π(1 + y2)

Example 3. The spectral density of the oscillation with a cyclic frequency ω:

f(t) = ejwt

F (y) = δy − ω =
1

2π

∞∫
−∞

ej(ω−y)t =

{
∞ if y = ω
0 if y 6= ω

where δ(. . .) denotes the Dirac’s delta function.

The Dirac’s delta, or impulse function differs much from the conventional mathe-
matical functions. For any continuous function h(y) of y, it holds that

∞∫
−∞

h(y)δ(y)dy = h(0).

C.3 From Fourier to Laplace integral

The spectral representation can only be obtained for the functions f(t); (−∞ < t <
∞) such that

∞∫
−∞

|f(t)|dt <∞

and such that the Dirichlet’s conditions hold, that is, the function has at each finite
interval a finite number of extrema and a finite nimber of discontinuities of the first
kind.
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By involving the Dirac’s delta-function, the spectral representation can be also ob-
tained for the stationary oscillations ejωt. But the increasing or decreasing oscil-
lations e(α+jω)t cannot be represented by the Fourier integral because the integral
defining F (y) diverges at t = +∞ if α > 0 or at t = −∞ if α < 0. The Laplace
integral overcomes this difficulty.

In practice, no process can be observed over the interval (−∞,∞). Usually, each
process starts at the finite instant which can be considered as the origin (t = 0), and
then is observed for a long time (theoretically, till t = +∞). Assuming f(t) = 0 for
t < 0, the spectral representation of f(t) is:

F (y) =
1

2π

∞∫
0

e−jytf(t)dt

∞∫
−∞

ejytF (y)dy =

{
f(t) if t ≥ 0
0 if t < 0

To avoid the divergent Fourier integrals, f(t) can be replaced by a decreasing func-
tion e−xtf(t) with a control parameter x > 0. The Fourier integral giving the
spectral density of this function depends on x and converges for all bounded func-
tions f(t), even for the exponential ones such as e−αt, α > 0 if x > α. The spectral
representation is now as follows:

Fx(y) =
1

2π

∞∫
0

e−jyt
[
e−xtf(t)

]
dt =

1

2π

∞∫
0

e−(x+jy)tf(t)dt

∞∫
−∞

e(x+jy)tFx(y)dy =

{
f(t) if t ≥ 0
0 if t < 0

Because the spectral density Fx(y) depends now on the complex variable s = x+jy,
let us denote

Fx(y) = F (x + jy) = F (s)
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For the integration, x is constant wheras y is changing from −∞ to +∞. Therefore,
s is changing from x− j∞ to x + j∞ (in the complex plane, it is a movement along
the vertical line with abscissa x).

By replacing f(t) with 2πf(t) and using ds = jdy, we obtain the Laplace integrals:

∞∫
0

e−stf(t)dt = F (s)

1

2πj

x+j∞∫
x−j∞

estF (s)ds =

{
f(t) if t ≥ 0
0 if t < 0

The first integral is called the Laplace integral. and the second one is the inverse
Laplace integral.

Physical meaning of the Laplace integral is that F (x + jy) with the constant x is a
spectral density of the decreasing function e−xtf(t) which has the cyclic frequency y.

Examples of the Laplace integral:

Example 1. Unit step function

u(t) =


1 if t > 0
0 if t < 0
ε if t = 0; (0 ≤ ε ≤ 1)

The spectral density (if e−st → 0 when t→∞, that is, if <(s) > 0) is:

F (s) =

∞∫
0

e−stdt =
e−st

−s

∣∣∣∣∣
∞

0

=
1

s

Example 2. Delayed unit step function

uτ (t) =


1 if t > τ > 0
0 if t < τ
ε if t = τ ; (0 ≤ ε ≤ 1)

The spectral density of uτ (t) = u(t− τ) is:

F (s) =

∞∫
0

e−stu(t− τ)dt =

∞∫
τ

e−stdt =
e−τs

s
if <(s) > 0

Thus, the delay τ of the function corresponds to multiplcation of the spectral
density by the factor e−τs.



A/Prof. Georgy Gimel’farb 45

Example 3. Exponential function f(t) = u(t)eαt with α = σ + jω:

σ ω Type of oscillation

0 6= 0 Complex oscillation
< 0 6= 0 Decreasing oscillation
> 0 6= 0 Increasing oscillation
6= 0 0 Aperiodic rise or decline

The spectral density is:

∞∫
0

e−steαtdt =

∞∫
0

e−(s−α)tdt =
1

s− α
if <(s) > <(α)

Example 4. Real-valued oscillation u(t) cos ωt is the sum of two complex oscillations

cos ωt =
1

2

(
ejωt + e−jωt

)
The spectral density is

∞∫
0

e−st cos ωt dt
1

2

(
1

s− jω
+

1

s + jω

)
=

s

s2 + ω2

Exercise: Find the spectral density of the real-valued oscillation u(t) sin ωt.

C.4 Laplace transform

The Laplace transform maps the space of initial functions to the space of transform
functions:

F (s) =

∞∫
0

e−stf(t)dt ↔ F (s) = L{f(t)}

The inverse Laplace transform inverses such a mapping:

f(t) =
1

2πj

x+∞∫
x−j∞

estF (s)ds; t > 0 ↔ f(t) = L−1{F (s)}

Many operations with functions become very simple in the transform space:
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Similarity f(at)→ 1
a
F
(

s
a

)
a > 0

F (as)← 1
a
f
(

t
a

)
Delay (shift) u(t− a)f(t− a)→ e−asF (s) a > 0
Decay e−αsf(t)→ F (s + α) α = σ + jω
Differentiation f ′(t)→ sF (s)− f(+0)

Integration
t∫
0

f(τ)dτ → 1
s
F (s)

1
t
f(t)←

∞∫
s

F (σ)dσ

Convolution f1(t) ∗ f2(t)→ F1(s) · F2(s)

C.5 Convolution

Convolution is an integral combination of functions which is frequently met in
physics, signal processing, and control:

f1(t) ∗ f2(t) =

t∫
0

f1(τ)f2(t− τ)dτ

The convolution is a commutative and associative operation:

f1(t) ∗ f2(t) = f2(t) ∗ f1(t);
f1(t) ∗ (f2(t) ∗ f3(t)) = (f1(t) ∗ f2(t)) ∗ f3(t)

The rules of differentiation

f ′(t) ≡ d

dt
f(t) → sF (s)− f(+0)

f ′′(t) ≡ d2

dt2
f(t) → s2F (s)− f(+0)s− f ′(+0)

. . . . . . . . .

f (n)(t) ≡ dn

dtn
f(t) → snF (s)− f(+0)sn−1 − f ′(+0)sn−2 − . . .

−f (n−2)(+0)s− fn−1(+0)

and the rule of convolution are the most important in practice because they permit
us to replace integral and differential equations by simpler algebraic ones.


