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Introduction
Bayesian learning algorithms calculate explicit probabilities for 

hypotheses

Naïve Bayes classifier is among the most effective in classifying text 
documents

Bayesian methods can also be used to analyze other algorithms

Training example incrementally increases or decreases the estimated 
probability that a hypothesis is correct

Prior knowledge can be combined with observed data to determine the 
final probability of a hypothesis
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Prior Knowledge

Prior knowledge is:
1.  Prior probability for each candidate 

hypothesis and

2.  A probability distribution over observed data
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Bayesian Methods in Practice
Bayesian methods accommodate hypotheses that make 

probabilistic predictions “this pneumonia patient has a 
98% chance of complete recovery”

New instances can be classified by combining the predictions 
of multiple hypotheses, weighted by their probabilities

Even when computationally intractable, they can provide a 
standard of optimal decision making against which other 
practical measures can be measured
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Practical Difficulties
1.  Require initial knowledge of many probabilities - 

estimated based on background knowledge, previously 
available data, assumptions about the form of the 
underlying distributions

2.  Significant computational cost to determine the Bayes 
optimal hypothesis in the general case - linear in the 
number of candidate hypotheses - in certain specialized 
situations the cost can be significantly reduced
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Bayes Theorem Intuition

Learning - we want the best hypothesis from 
some space H, given the observed training 
data D. Best can be defined as most 
probable given the data D plus any initial 
knowledge about prior probabilities of the 
various hypotheses in H.

This is a direct method!!! (No Search)
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Bayes Terminology
P(h) – the prior probability that hypothesis h holds before we observe 

the training data - prior probability - if we have no prior knowledge we 
assign the same initial probability to them all (it is trickier than this!!)

P(D) - prior probability training data D will be observed given no 
knowledge about which hypothesis holds

P(D|h) - the probability of observing data D given that hypothesis h holds

P(h|D) - the probability that h holds given the training data D - posterior 
probability
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Bayes Theorem

Probability increases with P(h) and P(D|h) and 
decreases with P(D) - this last is not true with a lot 
of other scoring functions!
€ 

P(h |D) =
P(D | h)P(h)

P(D)
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MAP & ML Hypothesis
So we want a maximum a posteriori hypothesis (MAP) - 

P(D) same for every hypothesis

If we assume every hypothesis is equally likely a priori then 
we want the maximum likelihood hypothesis 

Bayes theorem is more general than Machine Learning!!

€ 

hMAP ≡ argmaxh∈H P(D | h)P(h)

€ 

hML ≡ argmaxh∈H P(D | h)
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A general Example
Two hypothesis: the patient has cancer, ⊕, the patient doesn’t have 

cancer, !
Prior knowledge: over the entire population of people .008 have cancer
The lab test returns a correct positive result in 98% of the cases in which 

cancer is actually present and a correct negative in 97% of the cases in 
which cancer is actually not present

P(cancer) = .008, P(¬cancer) = .992
P(⊕|cancer) = .98, P(!|cancer) = .02
P(⊕|¬cancer)=.03, P(!|¬cancer)=.97

So given a new patient with a positive lab test, should we diagnose the 
patient as having cancer or not??

Which is the MAP hypothesis? 
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Example Answer
Has cancer - P(⊕|cancer)P(cancer) = (.98).008 = .0078
Doesn’t have cancer - P(⊕|¬cancer)P(¬cancer)=(.03).992=.0298
hMAP=¬cancer

Exact posterior probabilities –

Posterior as a real probability

€ 

P(cancer |⊕) =
P(⊕ | cancer)P(cancer)

P(⊕)
=
.0078
P(⊕)

€ 

.0078
P(⊕ | cancer) + P(⊕ |¬cancer)

=
.0078

.0078 + .0298
= .21
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Minimum Description Length
Let us look at hMAP in the light of basic 

concepts of information theory

hMAP ≡ argmaxh∈H P(D|h) P(h) 
             = argminh∈H - log2P(D|h) - log2P(h)

This can be interpreted as a statement that 
short hypotheses are preferred.
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Information Theory
•  Consider the problem of designing a code to 

transmit messages drawn at random, where the 
probability of encountering message i is pi.  

•  We want the code that minimizes the expected 
number of bits we must transmit in order to 
encode a message drawn at random.  

•  To minimize the expected code length we should 
assign shorter codes to more probable messages.
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Optimal Code
•  Shannon and Weaver (1949) showed the optimal code assigns -

log2pi bits to encode message i. Where pi is the probability of i 
appearing.

•  LC(i) is the description length of message i with respect to code 
C.

•  LCH is the size of the description of the hypothesis h using the 
optimal representation for encoding the hypothesis space H.

•  LCD|h is the size of the description of the training data D given 
the hypothesis h using the optimal representation for encoding 
the data D assuming that both the sender and receiver know the 
hypothesis h.
€ 

LCH
(h) = −log2 P(h)

€ 

LCD |h
(D | h) = −log2 P(D | h)
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Applying MDL

•  To apply this principle we must choose specific 
representations C1 and C2 appropriate for the 
given learning task!

•  Minimum Description Length Principle:

•  If C1 and C2 are chosen to be optimal encodings 
for their respective tasks, then hMDL=hMAP

€ 

hMDL ≡ argminh∈H LC1 (h) + LC2 (D | h)
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MDL Example
•  Apply MDL principle to the problem of learning 

decision trees.  
•  C1 is an encoding of trees where the description 

length grows with the number of nodes in the tree 
and the number of edges.  

•  C2 transmits misclassified examples by identifying 
–  which example is misclassified (log2m bits, where m is 

the number of training instances) and 
–  its correct classification (log2k bits, where k is the 

number of classes).
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MDL Intuition
MDL principle provides a way of trading off hypothesis 

complexity for the number of errors committed by the 
hypothesis

So the MDL principle produces a MAP hypothesis if the 
encodings C1 and C2 are optimal.  But to show that we 
would need all the prior probabilities P(h) as well as P(D|
h).

No reason to believe the MDL hypothesis relative to arbitrary 
encodings should be preferred!!!!
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What I hate about MDL

“But you did’t find the optimal encodings C1 
and C2.”

“Well it doesn’t matter if you see enough data 
it doesn’t matter which one you use.”

So why are we using a Bayesian approach???? 
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Bayes Optimal Classifier

What is the most probable classification of the 
new instance given the training data?

Could just apply the MAP hypothesis, but can 
do better!!!
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Bayes Optimal Intuitions
Assume three hypothesis h1, h2, h3 whose posterior probabilities are .4, .3 

and .3 respectively.  

Thus h1 is the MAP hypothesis.  

Suppose we have a new instance x which is classified positive by h1 and 
negative by h2 and h3. 

 
Taking all hypothesis into account, the probability that x is positive is .4 

and the probability it is negative is .6.  

The most probable classification (negative) is different than the 
classification given by the MAP hypothesis!!!
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Bayes Optimal Classifier II
We want to combine the predictions of all hypotheses 

weighted by their posterior probabilities.

where vj is from the set of classifications V.

Bayes Optimal Classification:

No other learner using the same hypothesis space and same 
prior knowledge can outperform this method on 
average.  It maximizes the probability that the new 
instance is classified correctly.

€ 

P(v j |D) = P(v j | hi)P(hi |D)hi ∈H
∑

€ 

argmaxv j ∈V P(v j | hi)P(hi |D)hi ∈H
∑
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Gibbs Algorithm
Bayes Optimal is quite costly to apply. It computes the 

posterior probabilities for every hypothesis in H and 
combines the predictions of each hypothesis to classify 
each new instance.

An alternative (less optimal) method:
1.  Choose a hypothesis h from H at random, according to the 

posterior probability distribution over H.
2.  Use h to predict the classification of the next instance x.

Under certain conditions the expected misclassification error 
for Gibbs algorithm is at most twice the expected error 
of the Bayes optimal classifier.
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What is Naïve Bayes?
Results comparable to ANN and decision trees in some domains

Each instance x is described by a conjunction of attribute values and the 
target value f(x) can take any value from a set V. A set of training 
instances are provided and a new instance is presented and the learner 
is asked to predict the target value.

P(vj) is estimated by the frequency of each target value in the training 
data.

Cannot use frequency for P(a1,a2,…an|vj) unless we have a very, very large 
set of training data to get a reliable estimate.

€ 

VMAP = argmaxv j ∈V P(v j | a1,a2...an )

= argmaxv j ∈V P(a1,a2,...an | v j )P(v j )
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Conditional Independence
Naïve Bayes assumes attribute values are 

conditionally independently given the target 
value - 

Naïve Bayes Classifier:

where vNB denotes the target values
P(ai|vj) can be estimated by frequency

€ 

P(a1,a2,...an | v j ) = P(ai | v j )i∏

€ 

vNB = argmaxv j ∈V P(v j ) P(ai | v j )i∏
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When is Naïve Bayes a MAP?

When conditional independence assumption is 
satisfied the naïve Bayes classification is a MAP 
classification

Naïve Bayes entails no search!!
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An Example
Target concept PlayTennis
Classify the following instance: <Outlook=sunny, 

Temperature = cool, Humidity = high, Wind = 
strong>

P(PlayTennis=yes)=9/14=.64
P(PlayTennis=no)=5/14=.36
P(Wind=strong|PlayTennis=yes)=3/9=.33
P(Wind=strong|PlayTennis=no)=3/5=.60
…..

€ 

vNB = argmaxv j ∈{yes,no} P(v j )P(Outlook = sunny | v j )P(Temperature = cool | v j )

P(Humidity = high | v j )P(Wind = strong | v j )
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An Example II

P(yes) P(sunny|yes) P(cool|yes) P(high|yes) 
P(strong|yes) = .0053

P(no) P(sunny|no) P(cool|no) P(high|no) 
P(strong|no) = .0206

Naïve Bayes returns “Play Tennis = no” with 
probability 

€ 

.0206
.0206 + .0053

= 0.7954 = 79.5%
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Naïve Bayes used for Document 
Clustering

•  Are the words conditionally independent?

•  Works really well anyway
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Bayesian Belief Networks

•  Naïve Bayes assumes all the attributes are 
conditionally independent

•  Bayesian Belief Networks (BBNs) describe a joint 
probability distribution over a set of variables by 
specifying a set of conditional independence 
assumptions and a set of conditional probabilities

•  X is conditionally independent of Y means P(X|
Y,Z) = P(X|Z)
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A Bayesian Belief Network

Storm BusTourGroup

Lightning Campfire

Thunder ForestFire
Campfire

      S,B  S,¬B ¬S,B ¬S,¬B
C   0.4    0.1    0.8     0.2
¬C 0.6    0.9    0.2     0.8
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Representation
•  Each variable is represented by a node and has 

two types of information specified.
1.  Arcs representing the assertions that the variable is 

conditionally independent of its nondescendents given 
its immediate predecessors (I.e., Parents). X is a 
descendent of Y if there is a directed path from Y to 
X.

2.  A conditional probability table describing the 
probability distribution for that variable given the 
values of its immediate predecessors.  This joint 
probability is computed by 

€ 

P(y1,...,yn ) = P(yi |Parents(yi))i=1

n
∏
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Representation II
•  Campfire is conditionally independent of its 

nondescendents Lightning and Thunder given its parents 
Storm and BusTourGroup

•  Also notice that ForestFire is conditionally independent of 
BusTourGroup and Thunder given Campfire and Storm 
and Lightning.

•  Similarly, Thunder is conditionally independent of Storm, 
BusTourGroup, Campfire, and ForestFire given Lightning.

•  BBNs are a convenient way to represent causal knowledge.  
The fact that Lightning causes Thunder is represented in 
the BBN by the fact that Thunder is conditionally 
independent of other variables in the network given the 
value of Lightning.

€ 

P(Campfire = True | Storm = True,BusTourGroup = True) = 0.4
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Inference
•  Can we use the BBN to infer the value of a target variable 

ForestFire  given the observed values of the other variables.
•  Infer not a single value but the probability distribution for the 

target variable which specifies the probability it will take on 
each possible value given the observed values of the other 
variables

•  Generally, we may wish to infer the probability distribution 
of a variable (e.g., ForestFire) given observed values for only 
a subset of the other variables (e.g., Thunder and 
BusTourGroup are the only observed values available).

•  Exact inference of probabilities (and even some approximate 
methods) for an arbitrary BBN is known to be NP-hard.

•  Monte Carlo methods provide approximate solutions by 
randomly sampling the distributions of the unobserved 
variables
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Learning BBNs
•  If the network structure was given in advance and the 

variables are fully observable, then just use the Naïve 
Bayes formula modulo only some of the variables are 
conditionally independent.

•  If the network structure is given but only some of the 
variables are observable, the problem is analogous to 
learning weights for the hidden units in an ANN.

•  Similarly, use a gradient ascent procedure to search 
through the space of hypotheses that corresponds to all 
possible entries in the conditional probability tables.  The 
objective function that is maximized is P(D|h).

•  By definition this corresponds to searching for the 
maximum likelihood hypothesis for the table entries.
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Gradient Ascent Training of BBN

•  Let wijk denote a single entry in one of the conditional 
probability tables.  Specifically that variable Yi will take on 
value yij given that its parents Ui take on the values uik.

•  If wijk is the top right entry, then Yi is the variable 
Campfire, Ui is the tuple of parents <Storm, 
BusTourGroup>, yij=True and uik=<False,False>.

•  The derivative for each wijk is

€ 

∂ lnP(D | h)
∂wij

=
P(Yi = yij ,Ui = uik | d)

wijkd ∈D
∑
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Weight Updates
•  So back to our example we must calculate P(Campfire = 

True, Storm = False, BusTourGroup = False | d) for each 
training example d in D.  If the required probability is 
unobservable then we can calculate it from other 
variables using standard BBN inference.

•  As weights wijk are updated they must remain in the 
interval [0,1] and the sum Σj wijk remains 1 for all i,k.  So 
must have a two step process.

1.   
2.  Renormalize the weights wijk

•  Will converge to a locally maximum likelihood 
hypothesis for the conditional probabilities in the BBn.

€ 

wijk ← wijk +η
Ph (yij ,uik | d)

wijkd ∈D
∑
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Summary
•  Bayesian methods provide a basis for probabilistic learning 

methods that accommodate knowledge about prior 
distributions of alternative hypothesis and about the 
probability of observing the data given various hypothesis.  
They assign a posterior probability to each candidate 
hypothesis, based on these assumed priors and the 
observed data,

•  Bayesian methods return the most probable hypothesis 
(e.g., a MAP hypothesis).

•  Bayes Optimal classfier combines the predictions of all 
alternative hypotheses weighted by their posterior 
probabilities, to calculate the most probable classification 
of a new instance.

3/8/18 37760 bayes & hmm



Naïve Bayes Summary
•  Naïve Bayes has been found to be useful in many killer 

apps.  
•  It is naïve because it has no street sense….no no no…it 

incorporates the simplifying assumption that attribute 
values are conditionally independent given the 
classification of the instance.  

•  When this is true naïve Bayes produces a MAP hypothesis.  
•  Even when the assumption is violated Naïve Bayes tends 

to perform well.  
•  BBNs provide a more expressive representation for sets of 

conditional independence assumptions.
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Minimum Description Length 
Summary

•  The Minimum Description Length principle 
recommends choosing the hypothesis that 
minimizes the description length of the hypothesis 
plus the description length of the data given the 
hypothesis. 

•  Bayes theorem and basic results from information 
theory can be used to provide a rationale for this 
principle.
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Hidden Markov Models
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Automata Theory

An automaton is a mathematical model for a 
finite state machine (FSM). 

An FSM is a machine that, given an input of 
symbols, 'jumps' through a series of states 
according to a transition function (which 
can be expressed as a table). 
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Finite State Machine
A model of computation consisting of a set of states, 

a start state, an input alphabet, and a transition 
function that maps input symbols and current 
states to a next state. 

Computation begins in the start state with an input 
string. It changes to new states depending on the 
transition function. 

Also known as finite state automaton
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Transition
Current 
State/ 
Condition 

State A State B State C 

Condition 
X 

… … … 

Condition 
Y 

… State C … 

Condition 
Z 

… … … 
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Deterministic Finite Automata
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Nondeterministic Finite 
Automata
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Variations
There are many variants, for instance, 

machines having actions (outputs) associated with 
transitions (Mealy machine) or 
states (Moore machine), 

multiple start states, 

transitions conditioned on no input symbol (a null)
 
more than one transition for a given symbol and state 

(nondeterministic finite state machine), 

one or more states designated as accepting states (recognizer), etc.
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Finite State Machines
An automaton is represented by the 5-tuple <Q,Σ,δ,q0,F>, where:

Q is a set of states.

Σ  is a finite set of symbols, that we will call the alphabet of the 
language the automaton accepts.

δ  is the transition function, that is δ: QxΣ→Q (For non-
deterministic automata, the empty string is an allowed input).

q0 is the start state, that is, the state in which the automaton is 
when no input has been processed yet (Obviously, q0∈ Q).

F is a set of states of Q (i.e. F⊆Q), called accept states.
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Markov Chains - CS Definition

Markov chain - A finite state machine with probabilities for 
each transition, that is, a probability that the next state is sj 
given that the current state is si.

Note: Equivalently, a weighted, directed graph in which the 
weights correspond to the probability of that transition. 

In other words, the weights are nonnegative and the total 
weight of outgoing edges is positive. 

If the weights are normalized, the total weight, including self-
loops, is 1. 
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Markov Chain Graph
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Markov Chain Example

3/8/18 50760 bayes & hmm



Markov Chains - Statistics Definition

In mathematics, a Markov chain, named after Andrey 
Markov, is a discrete-time stochastic process with 
the Markov property.

That is a Markov chain is a series of states of a system 
that has the Markov property. 

At each time the system may have changed from the 
state it was in the moment before, or it may have 
stayed in the same state. The changes of state are 
called transitions.
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Markov Property

If a sequence of states has the Markov 
property, it means that every future state is 
conditionally independent of every prior 
state given the current state. 
Chain rule:

Markov assumption:

€ 

P(w1,...,wn ) = P(w1) P(wi |w1,...,wi−1)
i= 2

n

∏

€ 

P(w1,...,wn ) ≈ P(w1) P(wi |wi−1)
i= 2

n

∏
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Conditionally Independent

In probability theory, two states X and Y are 
conditionally independent given a third event Z 
precisely if the occurrence or non-occurrence 
of X and Y are independent events in their 
conditional probability distribution given Z. 

In other words, 
P(X∩Y|Z) = P(X|Z) P(Y|Z)
Or equivalently, P(X|Y∩Z) = P(X|Z)
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Formal Statistics Definition
A Markov chain is a sequence of random variables X1, X2, X3, ... 

with the Markov property, namely that, given the present state, 
the future and past states are independent. 

Formally, P(Xn+1=x|Xn=xn,…,X1=x1)=P(Xn+1=x|Xn=xn)

The possible values of Xi form a countable set S called the state 
space of the chain. 
(We will be restricting ourselves to finite sets.)

Markov chains are often described by a directed graph, where the 
edges are labeled by the probabilities of going from one state to 
the other states.
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Introduction to Probability
We describe a Markov chain as follows: 

We have a set of states, S = {s1 , s2 , . . . , sr }. 
The process starts in one of these states and moves successively from one 

state to another. Each move is called a step. 

If the chain is currently in state si , then it moves to state sj at the next step 
with a probability denoted by pij , and this probability does not depend 
upon which states the chain was in before the current state. 

The probabilities pij are called transition probabilities. 

The process can remain in the state it is in, and this occurs with 
probability pii . 

An initial probability distribution, defined on S, specifies the starting state. 
Usually this is done by specifying a particular state as the starting 
state. 3/8/18 55760 bayes & hmm



Land of Oz
According to Kemeny, Snell, and Thompson2, the Land of Oz 

is blessed by many things, but not by good weather. 

They never have two nice days in a row. 
If they have a nice day, they are just as likely to have snow as 

rain the next day. 
If they have snow or rain, they have an even chance of having 

the same the next day. 
If there is change from snow or rain, only half of the time is 

this a change to a nice day. 
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Example Continued
With this information we form a Markov chain as 

follows. 
We take as states the kinds of weather R, N, and S. 
From the above information we determine the transition 

probabilities. These are most conveniently represented 
in a square array as 

€ 

R N S

P =

R
N
S

1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2

" 

# 

$ 
$ $ 

% 

& 

' 
' ' 
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Hidden Markov Models
A hidden Markov model (HMM) is a statistical model in which the 

system being modeled is assumed to be a Markov process 
with unknown parameters, and the challenge is to determine the 
hidden parameters from the observable parameters. 

A HMM can be considered as the simplest dynamic Bayesian 
network. (DBN means the arcs are directed. If the arcs aren’t 
directed you have Markov Random Fields (MRFs) or Markov 
networks)

In a regular Markov model, the state is directly visible to the 
observer, and therefore the state transition probabilities are the 
only parameters. 

In a hidden Markov model, the state is not directly visible, but 
variables influenced by the state are visible. 
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HMMs Continued
Each state has a probability distribution over the 

possible output tokens. 

Therefore the sequence of tokens generated by an 
HMM gives some information about the sequence of 
states.

Hidden Markov models are especially known for their 
application in temporal pattern recognition such as 
speech, handwriting, gesture recognition, musical 
score following and bioinformatics.
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Hidden Markov Model Graph
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Why Hidden Markov Models

•  http://www.cs.umd.edu/~djacobs/
CMSC828/ApplicationsHMMs.pdf
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Trellis Layout
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Probability of HMM
The probability of observing a sequence Y = y(0),y(1),...,y(L − 1) of 

length L is given by: 

P(Y) = ΣX P(Y|X) P(X)

where the sum runs over all possible hidden node sequences X = 
x(0),x(1),...,x(L − 1). 

Brute force calculation of P(Y) is intractable for most real-life 
problems, as the number of possible hidden node sequences is 
going to be extremely high. 

The calculation can however be sped up enormously using an 
algorithm called the forward procedure.
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HMM CS Definition
A variant of a finite state machine having a set of states, Q, 

an output alphabet, O, transition probabilities, A, 
output probabilities, B, and initial state probabilities, Π. 

The current state is not observable. Instead, each state 
produces an output with a certain probability (B). 

Usually the states, Q, and outputs, O, are understood, so an 
HMM is said to be a triple, (A, B, Π).
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HMM Formal CS definition
A = {aij = P(qj at t+1 | qi at t)}, where P(x | y) is the 

conditional probability of x given y, t ≥ 1 is time, 
and qi ∈ Q. ���

Informally, A is the probability that the next state is qj 
given that the current state is qi.

B = {bik = P(ok | qi)}, where ok ∈ O. 
Informally, B is the probability that the output is ok given 

that the current state is qi.
Π = {pi = P(qi at t=1)}.
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HMM Formal Statistics 
Definition

States: A set of states S=s1,…,sn

Transition probabilities: A= a1,1,a1,2,…,an,n Each ai,j represents 
the probability of transitioning from state si to sj.

Emission probabilities: A set B of functions of the form bi(ot) 
which is the probability of observation ot  being emitted by 
si

Initial state distribution: πi is the probability that si is a start 
state
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Hidden Markov Models 
Summary

Frequently, patterns do not appear in isolation but as part of a 
series in time - this progression can sometimes be used to 
assist in their recognition. 

Assumptions are usually made about the time based process - 
a common assumption is that the process's state is 
dependent only on the preceding N states - then we have 
an order N Markov model. 

The simplest case is N=1, first-order Markov Model.
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Stop here
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Uses for Hidden Markov Models

Various examples exists where the process 
states (patterns) are not directly observable, 
but are indirectly, and probabilistically, 
observable as another set of patterns - we 
can then define a hidden Markov model - 
these models have proved to be of great 
value in many current areas of research, 
notably speech recognition.
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How to use HMMs
Such models of real processes pose three problems that are 

amenable to immediate attack; these are:
Evaluation : with what probability does a given model generate a 

given sequence of observations. The forward algorithm solves 
this problem efficiently.

Decoding : what sequence of hidden (underlying) states most 
probably generated a given sequence of observations. The Viterbi 
algorithm solves this problem efficiently.

Learning : what model most probably underlies a given sample of 
observation sequences - that is, what are the parameters of such a 
model. This problem may be solved by using the forward-
backward algorithm (or Baum Welch)
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Success of HMMs

HMMs have proved to be of great value in 
analysing real systems. 

Their usual drawback is the over-
simplification associated with the Markov 
assumption 
that a state is dependent only on predecessors, 

and that this dependence is time independent.
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3 Main Problems - CS style
There are three canonical problems associated with 

HMMs:･
–  Evaluation: Given the parameters of the model, compute 

the probability of a particular output sequence. This problem 
is solved by the forward algorithm.

–  Decoding: Given the parameters of the model, find the most 
likely sequence of hidden states that could have generated a 
given output sequence. This problem is solved by the Viterbi 
algorithm.

–  Learning: Given an output sequence or a set of such 
sequences, find the most likely set of state transition and 
output probabilities. In other words, train the parameters of 
the HMM given a dataset of sequences. This problem is 
solved by the Baum-Welch algorithm, forward-backward 
algorithm, EM algorithm.
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HMM Example���
http://en.wikipedia.org/wiki/Hidden_Markov_model

"HMMsequence" by Hakeem.gadi – 
Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons – 
http://commons.wikimedia.org/wiki/File:HMMsequence.svg#mediaviewer/File:HMMsequence.svg



Another HMM Example���
http://en.wikipedia.org/wiki/Hidden_Markov_model

"HMMGraph" by Terencehonles - Own work. Licensed under Public domain via Wikimedia Commons – 
http://commons.wikimedia.org/wiki/File:HMMGraph.svg#mediaviewer/File:HMMGraph.svg



Yet Another HMM example���
http://en.wikipedia.org/wiki/Viterbi_algorithm

"An example of HMM" by Reelsun - By using open office draw. 
Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons – 
http://commons.wikimedia.org/wiki/File:An_example_of_HMM.png#mediaviewer/File:An_example_of_HMM.png



Evaluation - Forward Algorithm

The forward algorithm, in the context of a 
hidden Markov model, is used to calculate a 
'belief state': the probability of a state at a 
certain time, given the history of evidence. 

The forward algorithm is closely related to, 
but distinct from, the Viterbi algorithm.



Evaluation - Finding the probability of an 
observed sequence

Exhaustive search for solution
–  We want to find the probability of an observed 

sequence given an HMM - that is, the parameters 
(π,A,B) are known. 

–  Consider the weather example; we have a HMM 
describing the weather and its relation to the state of the 
seaweed, and we also have a sequence of seaweed 
observations. 

–  Suppose the observations for 3 consecutive days are 
(dry,damp,soggy) - on each of these days, the weather 
may have been sunny, cloudy or rainy. 

–  We can picture the observations and the possible 
hidden states as a trellis.



Trellis



Trellis Description
Each column in the trellis shows the possible state of the weather 
and each state in one column is connected to each state in the 
adjacent columns. 

Each of these state transitions has a probability provided by the 
state transition matrix. 

Under each column is the observation at that time; the probability 
of this observation given any one of the above states is provided by 
the confusion matrix.

It can be seen that one method of calculating the probability of the 
observed sequence would be to find each possible sequence of the 
hidden states, and sum these probabilities. 



Brute Force Calculation
For the above example, there would be 33=27 possible 
different weather sequences, and so the probability is

P(dry,damp,soggy | HMM) = 
P(dry,damp,soggy | sunny,sunny,sunny) + 
P(dry,damp,soggy | sunny,sunny ,cloudy) + 
P(dry,damp,soggy | sunny,sunny ,rainy) + . . . . 
P(dry,damp,soggy | rainy,rainy ,rainy)

Calculating the probability in this manner is computationally 
expensive, particularly with large models or long sequences, 
but we can use the time invariance of the probabilities to 
reduce the complexity of the problem.



Problem 1: Probability of an Observation 
Sequence - Evaluation

What is                     ?

The probability of a observation sequence is the sum of the 
probabilities of all possible state sequences in the HMM.

Naïve computation is very expensive. Given T observations and N 
states, there are NT possible state sequences.

Even small HMMs, e.g. T=10 and  N=10, contain 10 billion 
different paths

Solution to this (and problem 2) is to use dynamic programming

€ 

P(O | λ)



Bugs
•  Naive algorithm 

1.  start a bug at state 0,  time 0,  holding value 0
2.  move each bug forward in time by making copies of it and 

incrementing the value of each copy by the probability of the 
transition and symbol emission

3.  go to  2 until all bugs have reached time T  
4.  sum up values on all bugs

•  Clever recursion 
–  adds a step between 2  and  3 above which says at each node 

replace all the bugs at a state with a single bug carrying the sum 
of their values



Reduction of complexity using 
recursion

•  We will consider calculating the probability of 
observing a sequence recursively given a HMM. 

•  We will first define a partial probability, which is the 
probability of reaching an intermediate state in the 
trellis. 

•  We then show how these partial probabilities are 
calculated at times t=1 and t=n (> 1).

•  Suppose throughout that the T-long observed 
sequence is



Partial Probabilities

Consider the trellis below showing the states 
and first-order transitions for the observation 
sequence dry,damp,soggy;



Intermediate States
We can calculate the probability of reaching an intermediate 
state in the trellis as the sum of all possible paths to that state.

For example, the probability of it being cloudy at t=2 is 
calculated from the paths;



Partial Probabilities
We denote the partial probability of state j at time t as t(j) - 
this partial probability is calculated as;

t(j)= P(observation | hidden state is j ) x 
       P(all paths to state j at time t)

The partial probabilities for the final observation hold the 
probability of reaching those states going through all possible 
paths - e.g., for the previous trellis, the final partial 
probabilities are calculated from the following paths 



Sum of Partial Probabilities

It follows that the sum of these final partial probabilities is the
sum of all possible paths through the trellis, and hence is the
probability of observing the sequence given the HMM.



Reduction of Computational 
Complexity

We can compare the computational complexity of 
calculating the probability of an observation 
sequence by exhaustive evaluation and by the 
recursive forward algorithm.

We have a sequence of T observations, O. 

We also have a Hidden Markov Model, (π,A,B), 
with N hidden states.



Computational Complexity
An exhaustive evaluation would involve computing for all possible 
execution sequences

the quantity

which sums the probability of observing what we do - note that the 
complexity here is exponential in T. 

•  Conversely, using the forward algorithm we can exploit knowledge of 
the previous time step to compute information about a new one - 
accordingly, the complexity will only be linear in T.



Forward Probabilities

What is the probability, given an HMM λ, that 
at time t the state is i and the partial 
observation o1, … ot has been generated?

αt(i) = P(o1…ot, qt=si | λ)



Visual Forward

€ 

α t ( j) = α t−1(i)aij
i=1

N

∑
% 

& 
' 

( 

) 
* b j (ot )

€ 

α t (i) = P(o1...ot , qt = si | λ)



Forward Recursive Function

Initialization: 

Induction: 

Termination: 

€ 

α1(i) = π ibi(o1) 1≤ i ≤ N

€ 

α t ( j) = α t−1(i)aij
i=1

N

∑
% 

& 
' 

( 

) 
* b j (ot ) 2 ≤ t ≤ T,1≤ j ≤ N

€ 

P(O | λ) = αT (i)
i=1

N

∑



Detailed Computational Complexity

In the naïve approach to solving problem 1 it 
takes on the order of T*NT computations

The forward algorithm takes on the order of 
N2T computations



Backward Algorithm

Analogous to the forward probability, just in 
the other direction

What is the probability that given an HMM 
and given the state at time t is i, the partial 
observation ot+1 … oT is generated?

€ 

βt (i) = P(ot+1...oT |qt = si,λ)



Backward Visual

€ 

βt (i) = P(ot+1...oT |qt = si,λ)

€ 

βt (i) = aijb j (ot+1)βt+1( j)
j=1

N

∑
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% 
& 
& 

' 
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) 
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Backward Recursive Function

Initialization:

Induction:

Termination:  

€ 

βT (i) =1, 1≤ i ≤ N

€ 

βt (i) = aijb j (ot+1)βt+1( j)
j=1

N

∑
$ 

% 
& 
& 

' 

( 
) 
) 
t = T −1...1,1≤ i ≤ N

€ 

P(O | λ) = π i β1(i)
i=1

N

∑



Comparing Forward and 
Backward

Notice that in the definitions above, the forward probability, 
P(o1…ot, qt=si | λ), is a joint probability whereas the 
backward probability, P(ot+1,…oT|qt=si,λ) is a conditional 
probability. 

This somewhat asymmetric definition is deliberate since it 
allows the probability of state occupation to be determined by 
taking the product of the two probabilities:
 

We will talk about this more during the Backward-Forward or 
Baum-Welch algorithm.

€ 

α j (t)β j (t) = P(O,qt = s j | λ)



Summary
•  Our aim is to find the probability of a sequence of observations given a 

HMM -  Pr(observations |λ).
•  We reduce the complexity of calculating this probability by first 

calculating partial probabilities ('s).  These represent the probability of 
getting to a particular state, s, at time t.
–  At time t = 1, the partial probabilities are calculated using the initial 

probabilities (from the vector) and Pr(observation|state) (from the 
confusion matrix);

–  At time t (> 1), the partial probabilites can be calculated using the partial 
probabilities at time t-1.

•  This definition of the problem is recursive, and the probability of the 
observation sequence is found by calculating the partial probabilities at 
time t = 1, 2, ..., T, and adding all 's at t = T.

•  Notice that computing the probability in this way is far less expensive 
than calculating the probabilities for all sequences and adding them.



Decoding
The solution to Problem 1 (Evaluation) gives us the 
sum of all paths through an HMM efficiently.

For Problem 2 (Decoding), we want to find the path 
with the highest probability.

We want to find the state sequence Q=q1…qT, such 
that

€ 

Q = argmax
Q '

P(Q' |O,λ)



Viterbi Algorithm

The Viterbi algorithm is a dynamic 
programming algorithm for finding the most 
likely sequence of hidden states – called the 
Viterbi path – that results in a sequence of 
observed events, especially in the context of 
Markov information sources and hidden 
Markov models.



Viterbi Algorithm���
http://en.wikipedia.org/wiki/Viterbi_algorithm

"Viterbi animated demo" by Schiessl – 
Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons – 
http://commons.wikimedia.org/wiki/File:Viterbi_animated_demo.gif#mediaviewer/File:Viterbi_animated_demo.gif



Most Probably Sequence of Hidden 
States

We often wish to take a particular HMM, and 
determine from an observation sequence the most 
likely sequence of underlying hidden states that 
might have generated it.

We can use a picture of the execution trellis to 
visualise the relationship between states and 
observations.



Trellis



Maximising Probability
We can find the most probable sequence of hidden 
states by listing all possible sequences of hidden 
states and finding the probability of the observed 
sequence for each of the combinations. 

The most probable sequence of hidden states is that 
combination that maximises

P(observed sequence | hidden state combination).



Brute Force Solution
For example, for the observation sequence in the trellis shown, the most 
probable sequence of hidden states is the sequence that maximises :

P(dry,damp,soggy | sunny,sunny,sunny), 
P(dry,damp,soggy | sunny,sunny,cloudy), 
P(dry,damp,soggy | sunny,sunny,rainy), . . . . 
P(dry,damp,soggy | rainy,rainy,rainy)

This approach is viable, but to find the most probable sequence by 
exhaustively calculating each combination is computationally expensive. 

As with the forward algorithm, we can use the time invariance of the 
probabilities to reduce the complexity of the calculation.



Reducing complexity using 
recursion

We will consider recursively finding the most probable sequence of 
hidden states given an observation sequence and a HMM. 

We will first define the partial probability, δ , which is the 
probability of reaching a particular intermediate state in the trellis. 

We then show how these partial probabilities are calculated at t=1 
and at t=n (> 1).

These partial probabilities differ from those calculated in the 
forward algorithm since they represent the probability of the most 
probable path to a state at time t, and not a total.



Partial Probabilities

Consider the trellis below showing the states and 
first order transitions for the observation sequence 
dry,damp,soggy;



Most Probable Path

For each intermediate and terminating state in the 
trellis there is a most probable path to that state. 

So, for example, each of the three states at t=3 will 
have a most probable path to it, perhaps like this;



Partial Best Paths
We will call these paths partial best paths. 

Each of these partial best paths has an associated probability, the partial probability or 
δ. 

Unlike the partial probabilities in the forward algorithm, δ is the probablity of the one 
(most probable) path to the state.

Thus  δ(i,t) is the maximum probability of all sequences ending at state i at time t, and 
the partial best path is the sequence which achieves this maximal probability. 

Such a probability (and partial path) exists for each possible value of i and t.

In particular, each state at time t = T will have a partial probability and a partial best 
path. We find the overall best path by choosing the state with the maximum partial 
probability and choosing its partial best path.



Advantages of Virterbi

Using the Viterbi algorithm to decode an 
observation sequence carries two important 
advantages:

1.  There is a reduction in computational 
complexity by using the recursion - this 
argument is exactly analogous to that used in 
justifying the forward algorithm.



Advantages continued
2.  The Viterbi algorithm has the very useful property of 

providing the best interpretation given the entire context 
of the observations. 

The Viterbi algorithm will look at the whole sequence before 
deciding on the most likely final state, and then 
`backtracking’ through the  f pointers to indicate how it might 
have arisen. 

This is very useful in `reading through’ isolated noise garbles, 
which are very common in live data.



Viterbi Algorithm

Similar to computing the forward probabilities, but 
instead of summing over transitions from incoming 
states, compute the maximum

Forward:

Viterbi Recursion:
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α t ( j) = α t−1(i)aij
i=1
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* b j (ot )
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δt ( j) = max
1≤ i≤N

δt−1(i)aij[ ] bj (ot )



Viterbi Recursive Function
Initialization: 
Induction: 

Termination:

Read out path: 

€ 

δ1(i) = π ibi(o1) 1≤ i ≤ N

€ 

δt ( j) = max
1≤ i≤N

δt−1(i)aij[ ] bj (ot )
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ψt ( j) = argmax
1≤ i≤N

δt−1(i)aij
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2 ≤ t ≤ T,1≤ j ≤ N
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1≤ i≤N

δT (i)
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qT
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1≤ i≤N
δT (i)
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qt
* =ψt+1(qt+1

* ) t = T −1,...,1



Viterbi Summary
The Viterbi algorithm provides a computationally efficient way of 
analysing observations of HMMs to recapture the most likely 
underlying state sequence. 

It exploits recursion to reduce computational load, and uses the 
context of the entire sequence to make judgements, thereby 
allowing good analysis of noise.

In use, the algorithm proceeds through an execution trellis 
calculating a partial probability for each cell, together with a back-
pointer indicating how that cell could most probably be reached. 

On completion, the most likely final state is taken as correct, and 
the path to it traced back to t=1 via the back pointers.



Baum-Welch Algorithm
The Baum–Welch algorithm is used to find the 
unknown parameters of a hidden Markov model 
(HMM). It makes use of the forward-backward 
algorithm and is named for Leonard E. Baum and 
Lloyd R. Welch.

The Baum–Welch algorithm uses the well known 
EM algorithm to find the maximum likelihood 
estimate of the parameters of a hidden Markov 
model given a set of observed feature vectors.



Purpose of Learning
The `useful' problems associated with HMMs are those of 
evaluation and decoding - they permit either a measurement 
of a model's relative applicability, or an estimate of what the 
underlying model is doing (what `really happened'). 

It can be seen that they both depend upon foreknowledge of 
the HMM parameters - the state transition matrix, the 
observation matrix, and the  vector.

There are, however, many circumstances in practical 
problems where these are not directly measurable, and have 
to be estimated - this is the learning problem. 



Learning
Up to now we’ve assumed that we know the underlying 
model 

Often these parameters are estimated on annotated 
training data, which has two drawbacks:

Annotation is difficult and/or expensive
Training data is different from the current data

We want to maximize the parameters with respect to the 
current data, i.e., we’re looking for a model       , such 
that

€ 

λ = (A,B,π )

€ 

λ'= argmax
λ

P(O | λ)

€ 

λ'



How it Works
The forward-backward algorithm permits this estimate to be 
made on the basis of a sequence of observations known to 
come from a given set, that represents a known hidden set 
following a Markov model.

An example may be a large speech processing database, 
where the underlying speech may be modeled by a Markov 
process based on known phonemes, and the observations may 
be modeled as recognisable states (perhaps via some vector 
quantisation), but there will be no (straightforward) way of 
deriving empirically the HMM parameters.



A Rose by any other name…

Forward-Backward algorithm is also called

Baum-Welch algorithm which is a type of

EM algorithm



Forward-Backward Intuition
The forward-backward algorithm is not unduly hard to 
comprehend, but is more complex in nature than the forward 
algorithm and the Viterbi algorithm. 

The algorithm proceeds by making an initial guess of the 
parameters (which may well be entirely wrong) and then 
refining it by assessing its worth, and attempting to reduce the 
errors it provokes when fitted to the given data. 

In this sense, it is performing a form of gradient descent, 
looking for a minimum of an error measure.



Basis of Forward-Backward
It derives its name from the fact that, for each state in an 
execution trellis, it computes the `forward' probability of 
arriving at that state (given the current model approximation) 
and the `backward' probability of generating the final state of 
the model, again given the current approximation. 

Both of these may be computed advantageously by exploiting 
recursion, much as we have seen already. 

Adjustments may be made to the approximated HMM 
parameters to improve these intermediate probabilities, and 
these adjustments form the basis of the algorithm iterations.



Baum-Welch

Unfortunately, there is no known way to 
analytically find a global maximum, i.e., a 
model     , such that

But it is possible to find a local maximum 

Given an initial model    , we can always find 
a model    , such that 

€ 

λ'= argmax
λ

P(O | λ)

€ 

P(O | λ') ≥ P(O | λ)

€ 

λ'

€ 

λ'

€ 

λ



Parameter Re-estimation

Use the forward-backward (or Baum-Welch) 
algorithm, which is a hill-climbing algorithm

Using an initial parameter instantiation, the forward-
backward algorithm iteratively re-estimates the 
parameters and improves the probability that given 
observation are generated  by the new parameters



What needs to be Re-estimated?

Three parameters need to be re-estimated:
–  Initial state distribution: 
– Transition probabilities: ai,j

– Emission probabilities: bi(ot)
€ 

π i



Re-estimating Transition 
Probabilites

What’s the probability of being in state si at 
time t and going to state sj, given the current 
model and parameters?

€ 

ξ t (i, j) = P(qt = si, qt+1 = s j |O,λ)



Visual Baum-Welch

€ 

ξ t (i, j) = P(qt = si, qt+1 = s j |O,λ)

€ 

ξ t (i, j) =
α t (i) ai, j b j (ot+1) βt+1( j)

α t (i) ai, j b j (ot+1) βt+1( j)
j=1

N

∑
i=1

N

∑



Transition re-estimation

The intuition behind the re-estimation 
equation for transition probabilities is

Formally:

€ 

ˆ a i, j =

ξ t (i, j)
t=1

T−1

∑

ξ t (i, j ')
j '=1

N

∑
t=1

T−1

∑

€ 

ˆ a i, j =
expected number of transitions from state si to state sj

expected number of transitions from state si



State Probability

Defining

As the probability of being in state si, given 
the complete observation O

We can say:

€ 

γ t (i) = ξ t (i, j)
j=1

N

∑

€ 

ˆ a i, j =

ξ t (i, j)
t=1

T−1

∑

γ t (i)
t=1

T−1

∑



Review of Probabilities
Forward probability: 

The probability of being in state si, given the partial 
observation o1,…,ot

Backward probability:
The probability of being in state si, given the partial 

observation ot+1,…,oT

Transition probability:
The probability of going from state si, to state sj, given the 

complete observation o1,…,oT

State probability:
The probability of being in state si, given the complete 

observation o1,…,oT

€ 

α t (i)

€ 

βt (i)

€ 

ξ t (i, j)

€ 

γ t (i)



Initial State Re-estimation

Initial state distribution:      is the probability that si 
is a start state

Re-estimation is easy:

Formally:
€ 

ˆ π i = expected number of times in state si at time 1
€ 

π i

€ 

ˆ π i = γ1(i)



Emission Re-estimations
Emission probabilities are re-estimated as

Formally:

Where

NOTE: that     here is the Kronecker delta function and is not 
related to the     in the discussion of the Viterbi algorithm!! 

€ 

ˆ b i(k) =
expected number of times in state si and observe symbol vk

expected number of times in state si

€ 

ˆ b i(k) =

δ(ot ,vk )γ t (i)
t=1

T

∑

γ t (i)
t=1

T

∑

€ 

δ(ot ,vk ) =1, if ot = vk,  and 0 otherwise

€ 

δ

€ 

δ



The Updated Model

Coming from                          we get to               
                       by the following update rules:

€ 

λ = (A,B,π )

€ 

λ'= ( ˆ A , ˆ B , ˆ π )

€ 

ˆ a i, j =

ξ t (i, j)
t=1

T−1

∑

γ t (i)
t=1

T−1

∑

€ 

ˆ b i(k) =

δ(ot ,vk )γ t (i)
t=1

T

∑

γ t (i)
t=1

T

∑

€ 

ˆ π i = γ1(i)



Product of two Probabilities
Notice that in the definitions above, the forward probability is a joint 
probability whereas the backward probability is a conditional probability. 

This somewhat asymmetric definition is deliberate since it allows the 
probability of state occupation to be determined by taking the product of 
the two probabilities. 

From the definitions,

€ 

α j (t)β j (t) = P(O,qt = si | λ)

αt(i) = P(o1…ot, qt=si | λ)

€ 

βt (i) = P(ot+1...oT |qt = si,λ)



What is EM

The forward-backward algorithm is an instance of 
the more general EM algorithm

–  The E Step: Compute the forward and backward 
probabilities for a give model

–  The M Step: Re-estimate the model parameters 

These two steps are repeated as necessary.



EM Algorithm
The EM algorithm [ALR77, RW84, GJ95, JJ94, Bis95, 
Wu83] is a general method of finding the maximum-
likelihood estimate of the parameters of an underlying 
distribution from a given data set when the data is incomplete 
or has missing values. 

There are two main applications of the EM algorithm. 
–  The first occurs when the data has missing values, due to problems 

with or limitations of the observation process. 
–  The second occurs when optimizing the likelihood function is 

analytically intractable but when the likelihood function can be 
simplified by assuming the existence of and values for additional 
but missing (or hidden) parameters. The latter application is more 
common in the computational pattern recognition community. 
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Monte Carlo Stuff
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3/8/18 140760 bayes & hmm



Monte Carlo Markov Chain 
(MCMC)

•  Monte Carlo – sampling

•  Markov Chain – finite automata with arrows 
and probabilities
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MCMC

•  Desired distribution as its equilibrium 
distribution

•  State of chain after a large number of steps 
is a sample of the desired distribution

3/8/18 760 bayes & hmm 142



MCMC

•  Quality of the sample improves as a function of 
the number of steps

•  How many steps are needed to converge to a 
stationary distribution with an acceptable error?

•  Only approximate – always some residual effect 
of the starting position
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MCMC Example
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MCMC Example 2

•  No matter what the initial distribution,
•  After several iterations

•  It will stabilise at p(x) = (0.2, 0.4, 0.4)
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Invariant Distribution
If stochastic transition matrix obeys the 
following properties:

–  Irreducibility: For any state, there is a positive 
probability of visiting all other states (the graph 
is connected)

– Aperiodicity: the chain should not get trapped 
in cycles
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Application

•  Calculating multi-dimensional integrals
– Ensemble of walkers
– At each point where the walker steps, the 

integrand value is counted towards the integral
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Random Walk Algorithms
•  Move around equilibrium in relatively small steps, no 

tendency for the steps to proceed in the same direction

•  Will take a long time to explore all of the space

•  Walker will often double back and cover ground already 
covered

•  Metropolis-Hastings, Gibbs Sample, Slice sampling, 
Multiple-try Metropolis
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Avoiding random walks

•  Prevent walker from doubling back

•  Harder to implement, faster convergence

•  (only try to avoid random walks)
–  Successive over-relaxation
–  Hybrid Monte Carlo – Hamilton Monte Carlo, uses 

momentum and Hamilton dynamics to take larger steps
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Monte Carlo Tree Search

•  Used to estimate min-max probability
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Problems with Go 

Go
•  Strongest programs weaker than amateur 

players

•  No Good Static Evaluation Function for Go



Monte Carlo Tree Search 

•  Random playouts 



Random playouts 
store # wins and # plays 



Make a move 



Connect 4 Demo 

http://beej.us/blog/data/monte-carlo-
method-game-ai/ 



Monte Carlo Tree Search
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Main Points of MCTS

•  Evaluation of moves in MCTS converges to 
minimax evaluation

•  No explicit evaluation function
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Exploration vs Exploitation

•  Converges to perfect play for (k to infinity)
–  If games with finite depth

– Exploration and exploitation
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UCT Formula  
(Upper confidence bound) 

•  Exploration and exploitation

Wi wins (from move i)
Ni playouts (from move i)
c exploration parameter (√2 or chosen empirically)
t playouts (all moves)

UCBi =
Wi

Ni

+ c log t
Ni



Computer Go since MCTS
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Improvements to MCTS ���
by Jared Newman

•  Using a DAG
– Split aggregate

•  Learning over multiple Runs
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DAG aggregation-split
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Results with Learning
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Markov Random Fields
A Markov random field is a set of random variables having a Markov 
property described by an undirected graph. 

A Markov random field is similar to a Bayesian network in its 
representation of dependencies; the differences being that Bayesian 
networks are directed and acyclic, whereas Markov networks are 
undirected and may be cyclic. 

Thus, a Markov network can represent certain dependencies that a 
Bayesian network cannot (such as cyclic dependencies); on the other 
hand, it can't represent certain dependencies that a Bayesian network can 
(such as induced dependencies).
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Induced Dependencies
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There are dependencies that an MRF cannot represent. 

One of these is the induced dependency. 

If the child node is observed and has multiple parents, in a 
Bayesian network (BN) information can flow between the 
parent nodes. 

In an MRF, no information can flow across known nodes.



Stop again
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Markov Random Fields
When the probability distribution is strictly positive, it is also referred to 
as a Gibbs random field. 

In the domain of artificial intelligence, a Markov random field is used to 
model various low- to mid-level tasks in image processing and computer 
vision.[2] 

For example, MRFs are used for image restoration, image completion, 
segmentation, image registration, texture synthesis, super-resolution, 
stereo matching and information retrieval.
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Markov Random Field���
http://en.wikipedia.org/wiki/Markov_random_field���

3/8/18 760 bayes & hmm 168

"Markov random field example". Via Wikipedia – 
http://en.wikipedia.org/wiki/File:Markov_random_field_example.png#mediaviewer/File:Markov_random_field_example.png



Markov Random Field
Given an undirected graph G = (V, E), a set of random 
variables X = (Xv)v ∈ V indexed by V  form a Markov random 
field with respect to G  if they satisfy the local Markov 
properties:

The three Markov properties are not equivalent to each other 
at all. 

In fact, the Local Markov property is stronger than the 
Pairwise one, while weaker than the Global one.
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Pairwise Markov Property
Pairwise Markov property: Any two non-adjacent variables are 
conditionally independent given all other variables:

Xu ⫫  Xv |  XV\{u,v} if {u,v} ∉ E
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Local Markov Property
Local Markov property: A variable is conditionally independent of all 
other variables given its neighbors:

Xv ⫫ XV\cl(v) | Xne(v)
where ne(v) is the set of neighbors of v, and cl(v) = {v} ∪ ne(v) is the 
closed neighbourhood of v.
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Global Markov property
Global Markov property: Any two subsets of variables are conditionally 
independent given a separating subset:

XA ⫫ XB | XS
where every path from a node in A to a node in B passes through S.
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Bayesian to Markov
To convert from a Bayesian network to a Markov network we follow three 
steps:
1.  Maintain the structure of the Bayesian network.
2.  Eliminate directionality by making all edges undirected.
3.  Moralize
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Markov to Bayesian

•  Data flow problems
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Markov to Bayesian Solution
To overcomes this, you perform three steps:
1.  Maintain the structure of the Markov network.
2.  Triangulate the graph to guarantee all dependency representations.
3.  Add directionality.
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Start again
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Markov Decision Processes ���
http://en.wikipedia.org/wiki/Markov_decision_process
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"Markov Decision Process example" by MistWiz – 
Own work. Licensed under Public domain via Wikimedia Commons – 
http://commons.wikimedia.org/wiki/File:Markov_Decision_Process_example.png#mediaviewer/File:Markov_Decision_Process_example.png



MDP Definition
A Markov decision process is a 4-tuple (S,A,P.(.,.),R.(.,.)), 
where
•  S is a finite set of states,
•  A is a finite set of actions (alternatively, As is the finite set of actions 

available from state s),
•  Pa(s,s') = Pr(st+1=s'  |  st = s, at=a) is the probability that action a in 

state s at time t will lead to state s' at time t+1,
•  Ra(s,s') is the immediate reward (or expected immediate reward) 

received after transition to state s' from state s.

(Note: The theory of Markov decision processes does not state that S or A 
are finite, but the basic algorithms below assume that they are finite.)
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Problem
The core problem of MDPs is to find a "policy" for the decision maker: a 
function π that specifies the action π(s) that the decision maker will 
choose when in state s. 

Note that once a Markov decision process is combined with a policy in 
this way, this fixes the action for each state and the resulting combination 
behaves like a Markov chain.
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Policy
The goal is to choose a policy π that will maximize some cumulative 
function of the random rewards, typically the expected discounted sum 
over a potentially infinite horizon:

     (where we choose at = π(st))

•  where  𝛾 is the discount factor and satisfies 0 ≤ 𝛾 < 1. (For example,  𝛾 
= 1/(1+r)  when the discount rate is r.)  𝛾  is typically close to 1.

Because of the Markov property, the optimal policy for this particular 
problem can indeed be written as a function of s only, as assumed above.
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Algorithms
MDPs can be solved by linear programming or dynamic programming. 
We present the latter approach.

Suppose we know the state transition function P and the reward function 
R, and we wish to calculate the policy that maximizes the expected 
discounted reward.

The standard family of algorithms to calculate this optimal policy requires 
storage for two arrays indexed by state: 

value V, which contains real values, and 
policy π which contains actions. 

At the end of the algorithm, π will contain the solution and V(s) will 
contain the discounted sum of the rewards to be earned (on average) by 
following that solution from state s.
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The Steps
The algorithm has the following two kinds of steps, which are repeated in 
some order for all the states until no further changes take place. They are 
defined recursively as follows:

Their order depends on the variant of the algorithm; one can also do them 
for all states at once or state by state, and more often to some states than 
others. As long as no state is permanently excluded from either of the 
steps, the algorithm will eventually arrive at the correct solution.
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Partial Observability
The solution above assumes that the state s is known when action is to be 
taken; otherwise π(s) cannot be calculated. When this assumption is not 
true, the problem is called a partially observable Markov decision process 
or POMDP.

http://en.wikipedia.org/wiki/
Partially_observable_Markov_decision_process

Burnetas, A.N. and M. N. Katehakis. "Optimal Adaptive Policies for 
Markov Decision Processes, Mathematics of Operations Research, 22,(1), 
1995.
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Reinforcement Learning
If the probabilities or rewards are unknown, the problem is one of 
reinforcement learning (Sutton and Barto, 1998).

For this purpose it is useful to define a further function, which corresponds to 
taking the action a and then continuing optimally (or according to whatever 
policy one currently has):

While this function is also unknown, experience during learning is based on 
(s, a) pairs (together with the outcome s'); that is, "I was in state s and I tried 
doing a and s' happened"). Thus, one has an array Q and uses experience to 
update it directly. This is known as Q‑learning.

Sutton, R. S. and Barto A. G. Reinforcement Learning: An Introduction. The MIT 
Press, Cambridge, MA, 1998.
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Reinforcement Learning
Reinforcement learning can solve Markov decision processes without 
explicit specification of the transition probabilities; the values of the 
transition probabilities are needed in value and policy iteration. 

In reinforcement learning, instead of explicit specification of the transition 
probabilities, the transition probabilities are accessed through a simulator 
that is typically restarted many times from a uniformly random initial 
state. 

Reinforcement learning can also be combined with function 
approximation to address problems with a very large number of states.
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Questions you should be able to 
answer – Day 1

•  What is the intuition behind Bayes theorem?
•  What is the difference between a maximum a posteriori 

hypothesis and a maximum likelihood hypothesis and a 
minimum description length hypothesis?

•  What are the benefits and drawbacks of naïve bayes?
•  What is a Markov chain is and what is the Markov 

Property?
•  What is difference between a hidden Markov model and a 

Markov chain?
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Questions you should be able to 
answer – Day 2

•  What is a MCMC algorithm?
•  What is Monte Carlo Tree Search?
•  What is the difference between a Markov 

Random Field and a Bayesian Network?
•  What is a Markov Decision Process?
•  What is a Partially Observable Markov 

Decision Process?
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