
Bayesian Learning

Computer Science 760
Patricia J Riddle

3/8/18 1760 bayes & hmm

Introduction
Bayesian learning algorithms calculate explicit probabilities for

hypotheses

Naïve Bayes classifier is among the most effective in classifying text
documents

Bayesian methods can also be used to analyze other algorithms

Training example incrementally increases or decreases the estimated
probability that a hypothesis is correct

Prior knowledge can be combined with observed data to determine the
final probability of a hypothesis

3/8/18 2760 bayes & hmm

Prior Knowledge

Prior knowledge is:
1.  Prior probability for each candidate

hypothesis and

2.  A probability distribution over observed data

3/8/18 3760 bayes & hmm

Bayesian Methods in Practice
Bayesian methods accommodate hypotheses that make

probabilistic predictions “this pneumonia patient has a
98% chance of complete recovery”

New instances can be classified by combining the predictions
of multiple hypotheses, weighted by their probabilities

Even when computationally intractable, they can provide a
standard of optimal decision making against which other
practical measures can be measured

3/8/18 4760 bayes & hmm

Practical Difficulties
1.  Require initial knowledge of many probabilities -

estimated based on background knowledge, previously
available data, assumptions about the form of the
underlying distributions

2.  Significant computational cost to determine the Bayes
optimal hypothesis in the general case - linear in the
number of candidate hypotheses - in certain specialized
situations the cost can be significantly reduced

3/8/18 5760 bayes & hmm

Bayes Theorem Intuition

Learning - we want the best hypothesis from
some space H, given the observed training
data D. Best can be defined as most
probable given the data D plus any initial
knowledge about prior probabilities of the
various hypotheses in H.

This is a direct method!!! (No Search)
3/8/18 6760 bayes & hmm

Bayes Terminology
P(h) – the prior probability that hypothesis h holds before we observe

the training data - prior probability - if we have no prior knowledge we
assign the same initial probability to them all (it is trickier than this!!)

P(D) - prior probability training data D will be observed given no
knowledge about which hypothesis holds

P(D|h) - the probability of observing data D given that hypothesis h holds

P(h|D) - the probability that h holds given the training data D - posterior
probability

3/8/18 7760 bayes & hmm

Bayes Theorem

Probability increases with P(h) and P(D|h) and
decreases with P(D) - this last is not true with a lot
of other scoring functions!
€

P(h |D) =
P(D | h)P(h)

P(D)

3/8/18 8760 bayes & hmm

MAP & ML Hypothesis
So we want a maximum a posteriori hypothesis (MAP) -

P(D) same for every hypothesis

If we assume every hypothesis is equally likely a priori then
we want the maximum likelihood hypothesis

Bayes theorem is more general than Machine Learning!!

€

hMAP ≡ argmaxh∈H P(D | h)P(h)

€

hML ≡ argmaxh∈H P(D | h)

3/8/18 9760 bayes & hmm

A general Example
Two hypothesis: the patient has cancer, ⊕, the patient doesn’t have

cancer, !
Prior knowledge: over the entire population of people .008 have cancer
The lab test returns a correct positive result in 98% of the cases in which

cancer is actually present and a correct negative in 97% of the cases in
which cancer is actually not present

P(cancer) = .008, P(¬cancer) = .992
P(⊕|cancer) = .98, P(!|cancer) = .02
P(⊕|¬cancer)=.03, P(!|¬cancer)=.97

So given a new patient with a positive lab test, should we diagnose the
patient as having cancer or not??

Which is the MAP hypothesis?

3/8/18 10760 bayes & hmm

Example Answer
Has cancer - P(⊕|cancer)P(cancer) = (.98).008 = .0078
Doesn’t have cancer - P(⊕|¬cancer)P(¬cancer)=(.03).992=.0298
hMAP=¬cancer

Exact posterior probabilities –

Posterior as a real probability

€

P(cancer |⊕) =
P(⊕ | cancer)P(cancer)

P(⊕)
=
.0078
P(⊕)

€

.0078
P(⊕ | cancer) + P(⊕ |¬cancer)

=
.0078

.0078 + .0298
= .21

3/8/18 11760 bayes & hmm

Minimum Description Length
Let us look at hMAP in the light of basic

concepts of information theory

hMAP ≡ argmaxh∈H P(D|h) P(h)
 = argminh∈H - log2P(D|h) - log2P(h)

This can be interpreted as a statement that
short hypotheses are preferred.

3/8/18 12760 bayes & hmm

Information Theory
•  Consider the problem of designing a code to

transmit messages drawn at random, where the
probability of encountering message i is pi.

•  We want the code that minimizes the expected
number of bits we must transmit in order to
encode a message drawn at random.

•  To minimize the expected code length we should
assign shorter codes to more probable messages.

3/8/18 13760 bayes & hmm

Optimal Code
•  Shannon and Weaver (1949) showed the optimal code assigns -

log2pi bits to encode message i. Where pi is the probability of i
appearing.

•  LC(i) is the description length of message i with respect to code
C.

•  LCH is the size of the description of the hypothesis h using the
optimal representation for encoding the hypothesis space H.

•  LCD|h is the size of the description of the training data D given
the hypothesis h using the optimal representation for encoding
the data D assuming that both the sender and receiver know the
hypothesis h.
€

LCH
(h) = −log2 P(h)

€

LCD |h
(D | h) = −log2 P(D | h)

3/8/18 14760 bayes & hmm

Applying MDL

•  To apply this principle we must choose specific
representations C1 and C2 appropriate for the
given learning task!

•  Minimum Description Length Principle:

•  If C1 and C2 are chosen to be optimal encodings
for their respective tasks, then hMDL=hMAP

€

hMDL ≡ argminh∈H LC1 (h) + LC2 (D | h)

3/8/18 15760 bayes & hmm

MDL Example
•  Apply MDL principle to the problem of learning

decision trees.
•  C1 is an encoding of trees where the description

length grows with the number of nodes in the tree
and the number of edges.

•  C2 transmits misclassified examples by identifying
–  which example is misclassified (log2m bits, where m is

the number of training instances) and
–  its correct classification (log2k bits, where k is the

number of classes).

3/8/18 16760 bayes & hmm

MDL Intuition
MDL principle provides a way of trading off hypothesis

complexity for the number of errors committed by the
hypothesis

So the MDL principle produces a MAP hypothesis if the
encodings C1 and C2 are optimal. But to show that we
would need all the prior probabilities P(h) as well as P(D|
h).

No reason to believe the MDL hypothesis relative to arbitrary
encodings should be preferred!!!!

3/8/18 17760 bayes & hmm

What I hate about MDL

“But you did’t find the optimal encodings C1
and C2.”

“Well it doesn’t matter if you see enough data
it doesn’t matter which one you use.”

So why are we using a Bayesian approach????

3/8/18 18760 bayes & hmm

Bayes Optimal Classifier

What is the most probable classification of the
new instance given the training data?

Could just apply the MAP hypothesis, but can
do better!!!

3/8/18 19760 bayes & hmm

Bayes Optimal Intuitions
Assume three hypothesis h1, h2, h3 whose posterior probabilities are .4, .3

and .3 respectively.

Thus h1 is the MAP hypothesis.

Suppose we have a new instance x which is classified positive by h1 and
negative by h2 and h3.

Taking all hypothesis into account, the probability that x is positive is .4

and the probability it is negative is .6.

The most probable classification (negative) is different than the
classification given by the MAP hypothesis!!!

3/8/18 20760 bayes & hmm

Bayes Optimal Classifier II
We want to combine the predictions of all hypotheses

weighted by their posterior probabilities.

where vj is from the set of classifications V.

Bayes Optimal Classification:

No other learner using the same hypothesis space and same
prior knowledge can outperform this method on
average. It maximizes the probability that the new
instance is classified correctly.

€

P(v j |D) = P(v j | hi)P(hi |D)hi ∈H
∑

€

argmaxv j ∈V P(v j | hi)P(hi |D)hi ∈H
∑

3/8/18 21760 bayes & hmm

Gibbs Algorithm
Bayes Optimal is quite costly to apply. It computes the

posterior probabilities for every hypothesis in H and
combines the predictions of each hypothesis to classify
each new instance.

An alternative (less optimal) method:
1.  Choose a hypothesis h from H at random, according to the

posterior probability distribution over H.
2.  Use h to predict the classification of the next instance x.

Under certain conditions the expected misclassification error
for Gibbs algorithm is at most twice the expected error
of the Bayes optimal classifier.

3/8/18 22760 bayes & hmm

What is Naïve Bayes?
Results comparable to ANN and decision trees in some domains

Each instance x is described by a conjunction of attribute values and the
target value f(x) can take any value from a set V. A set of training
instances are provided and a new instance is presented and the learner
is asked to predict the target value.

P(vj) is estimated by the frequency of each target value in the training
data.

Cannot use frequency for P(a1,a2,…an|vj) unless we have a very, very large
set of training data to get a reliable estimate.

€

VMAP = argmaxv j ∈V P(v j | a1,a2...an)

= argmaxv j ∈V P(a1,a2,...an | v j)P(v j)

3/8/18 23760 bayes & hmm

Conditional Independence
Naïve Bayes assumes attribute values are

conditionally independently given the target
value -

Naïve Bayes Classifier:

where vNB denotes the target values
P(ai|vj) can be estimated by frequency

€

P(a1,a2,...an | v j) = P(ai | v j)i∏

€

vNB = argmaxv j ∈V P(v j) P(ai | v j)i∏

3/8/18 24760 bayes & hmm

When is Naïve Bayes a MAP?

When conditional independence assumption is
satisfied the naïve Bayes classification is a MAP
classification

Naïve Bayes entails no search!!

3/8/18 25760 bayes & hmm

An Example
Target concept PlayTennis
Classify the following instance: <Outlook=sunny,

Temperature = cool, Humidity = high, Wind =
strong>

P(PlayTennis=yes)=9/14=.64
P(PlayTennis=no)=5/14=.36
P(Wind=strong|PlayTennis=yes)=3/9=.33
P(Wind=strong|PlayTennis=no)=3/5=.60
…..

€

vNB = argmaxv j ∈{yes,no} P(v j)P(Outlook = sunny | v j)P(Temperature = cool | v j)

P(Humidity = high | v j)P(Wind = strong | v j)

3/8/18 26760 bayes & hmm

An Example II

P(yes) P(sunny|yes) P(cool|yes) P(high|yes)
P(strong|yes) = .0053

P(no) P(sunny|no) P(cool|no) P(high|no)
P(strong|no) = .0206

Naïve Bayes returns “Play Tennis = no” with
probability

€

.0206
.0206 + .0053

= 0.7954 = 79.5%

3/8/18 27760 bayes & hmm

Naïve Bayes used for Document
Clustering

•  Are the words conditionally independent?

•  Works really well anyway

3/8/18 760 bayes & hmm 28

Bayesian Belief Networks

•  Naïve Bayes assumes all the attributes are
conditionally independent

•  Bayesian Belief Networks (BBNs) describe a joint
probability distribution over a set of variables by
specifying a set of conditional independence
assumptions and a set of conditional probabilities

•  X is conditionally independent of Y means P(X|
Y,Z) = P(X|Z)

3/8/18 29760 bayes & hmm

A Bayesian Belief Network

Storm BusTourGroup

Lightning Campfire

Thunder ForestFire
Campfire

 S,B S,¬B ¬S,B ¬S,¬B
C 0.4 0.1 0.8 0.2
¬C 0.6 0.9 0.2 0.8

3/8/18 30760 bayes & hmm

Representation
•  Each variable is represented by a node and has

two types of information specified.
1.  Arcs representing the assertions that the variable is

conditionally independent of its nondescendents given
its immediate predecessors (I.e., Parents). X is a
descendent of Y if there is a directed path from Y to
X.

2.  A conditional probability table describing the
probability distribution for that variable given the
values of its immediate predecessors. This joint
probability is computed by

€

P(y1,...,yn) = P(yi |Parents(yi))i=1

n
∏

3/8/18 31760 bayes & hmm

Representation II
•  Campfire is conditionally independent of its

nondescendents Lightning and Thunder given its parents
Storm and BusTourGroup

•  Also notice that ForestFire is conditionally independent of
BusTourGroup and Thunder given Campfire and Storm
and Lightning.

•  Similarly, Thunder is conditionally independent of Storm,
BusTourGroup, Campfire, and ForestFire given Lightning.

•  BBNs are a convenient way to represent causal knowledge.
The fact that Lightning causes Thunder is represented in
the BBN by the fact that Thunder is conditionally
independent of other variables in the network given the
value of Lightning.

€

P(Campfire = True | Storm = True,BusTourGroup = True) = 0.4

3/8/18 32760 bayes & hmm

Inference
•  Can we use the BBN to infer the value of a target variable

ForestFire given the observed values of the other variables.
•  Infer not a single value but the probability distribution for the

target variable which specifies the probability it will take on
each possible value given the observed values of the other
variables

•  Generally, we may wish to infer the probability distribution
of a variable (e.g., ForestFire) given observed values for only
a subset of the other variables (e.g., Thunder and
BusTourGroup are the only observed values available).

•  Exact inference of probabilities (and even some approximate
methods) for an arbitrary BBN is known to be NP-hard.

•  Monte Carlo methods provide approximate solutions by
randomly sampling the distributions of the unobserved
variables

3/8/18 33760 bayes & hmm

Learning BBNs
•  If the network structure was given in advance and the

variables are fully observable, then just use the Naïve
Bayes formula modulo only some of the variables are
conditionally independent.

•  If the network structure is given but only some of the
variables are observable, the problem is analogous to
learning weights for the hidden units in an ANN.

•  Similarly, use a gradient ascent procedure to search
through the space of hypotheses that corresponds to all
possible entries in the conditional probability tables. The
objective function that is maximized is P(D|h).

•  By definition this corresponds to searching for the
maximum likelihood hypothesis for the table entries.

3/8/18 34760 bayes & hmm

Gradient Ascent Training of BBN

•  Let wijk denote a single entry in one of the conditional
probability tables. Specifically that variable Yi will take on
value yij given that its parents Ui take on the values uik.

•  If wijk is the top right entry, then Yi is the variable
Campfire, Ui is the tuple of parents <Storm,
BusTourGroup>, yij=True and uik=<False,False>.

•  The derivative for each wijk is

€

∂ lnP(D | h)
∂wij

=
P(Yi = yij ,Ui = uik | d)

wijkd ∈D
∑

3/8/18 35760 bayes & hmm

Weight Updates
•  So back to our example we must calculate P(Campfire =

True, Storm = False, BusTourGroup = False | d) for each
training example d in D. If the required probability is
unobservable then we can calculate it from other
variables using standard BBN inference.

•  As weights wijk are updated they must remain in the
interval [0,1] and the sum Σj wijk remains 1 for all i,k. So
must have a two step process.

1. 
2.  Renormalize the weights wijk

•  Will converge to a locally maximum likelihood
hypothesis for the conditional probabilities in the BBn.

€

wijk ← wijk +η
Ph (yij ,uik | d)

wijkd ∈D
∑

3/8/18 36760 bayes & hmm

Summary
•  Bayesian methods provide a basis for probabilistic learning

methods that accommodate knowledge about prior
distributions of alternative hypothesis and about the
probability of observing the data given various hypothesis.
They assign a posterior probability to each candidate
hypothesis, based on these assumed priors and the
observed data,

•  Bayesian methods return the most probable hypothesis
(e.g., a MAP hypothesis).

•  Bayes Optimal classfier combines the predictions of all
alternative hypotheses weighted by their posterior
probabilities, to calculate the most probable classification
of a new instance.

3/8/18 37760 bayes & hmm

Naïve Bayes Summary
•  Naïve Bayes has been found to be useful in many killer

apps.
•  It is naïve because it has no street sense….no no no…it

incorporates the simplifying assumption that attribute
values are conditionally independent given the
classification of the instance.

•  When this is true naïve Bayes produces a MAP hypothesis.
•  Even when the assumption is violated Naïve Bayes tends

to perform well.
•  BBNs provide a more expressive representation for sets of

conditional independence assumptions.

3/8/18 38760 bayes & hmm

Minimum Description Length
Summary

•  The Minimum Description Length principle
recommends choosing the hypothesis that
minimizes the description length of the hypothesis
plus the description length of the data given the
hypothesis.

•  Bayes theorem and basic results from information
theory can be used to provide a rationale for this
principle.

3/8/18 39760 bayes & hmm

Hidden Markov Models

Comp Sci 369
Dr Patricia Riddle

3/8/18 40760 bayes & hmm

Automata Theory

An automaton is a mathematical model for a
finite state machine (FSM).

An FSM is a machine that, given an input of
symbols, 'jumps' through a series of states
according to a transition function (which
can be expressed as a table).

3/8/18 41760 bayes & hmm

Finite State Machine
A model of computation consisting of a set of states,

a start state, an input alphabet, and a transition
function that maps input symbols and current
states to a next state.

Computation begins in the start state with an input
string. It changes to new states depending on the
transition function.

Also known as finite state automaton
3/8/18 42760 bayes & hmm

Transition
Current
State/
Condition

State A State B State C

Condition
X

… … …

Condition
Y

… State C …

Condition
Z

… … …

3/8/18 43760 bayes & hmm

Deterministic Finite Automata

3/8/18 44760 bayes & hmm

Nondeterministic Finite
Automata

3/8/18 45760 bayes & hmm

Variations
There are many variants, for instance,

machines having actions (outputs) associated with
transitions (Mealy machine) or
states (Moore machine),

multiple start states,

transitions conditioned on no input symbol (a null)

more than one transition for a given symbol and state

(nondeterministic finite state machine),

one or more states designated as accepting states (recognizer), etc.
3/8/18 46760 bayes & hmm

Finite State Machines
An automaton is represented by the 5-tuple <Q,Σ,δ,q0,F>, where:

Q is a set of states.

Σ  is a finite set of symbols, that we will call the alphabet of the
language the automaton accepts.

δ  is the transition function, that is δ: QxΣ→Q (For non-
deterministic automata, the empty string is an allowed input).

q0 is the start state, that is, the state in which the automaton is
when no input has been processed yet (Obviously, q0∈ Q).

F is a set of states of Q (i.e. F⊆Q), called accept states.
3/8/18 47760 bayes & hmm

Markov Chains - CS Definition

Markov chain - A finite state machine with probabilities for
each transition, that is, a probability that the next state is sj
given that the current state is si.

Note: Equivalently, a weighted, directed graph in which the
weights correspond to the probability of that transition.

In other words, the weights are nonnegative and the total
weight of outgoing edges is positive.

If the weights are normalized, the total weight, including self-
loops, is 1.

3/8/18 48760 bayes & hmm

Markov Chain Graph

3/8/18 49760 bayes & hmm

Markov Chain Example

3/8/18 50760 bayes & hmm

Markov Chains - Statistics Definition

In mathematics, a Markov chain, named after Andrey
Markov, is a discrete-time stochastic process with
the Markov property.

That is a Markov chain is a series of states of a system
that has the Markov property.

At each time the system may have changed from the
state it was in the moment before, or it may have
stayed in the same state. The changes of state are
called transitions.

3/8/18 51760 bayes & hmm

Markov Property

If a sequence of states has the Markov
property, it means that every future state is
conditionally independent of every prior
state given the current state.
Chain rule:

Markov assumption:

€

P(w1,...,wn) = P(w1) P(wi |w1,...,wi−1)
i= 2

n

∏

€

P(w1,...,wn) ≈ P(w1) P(wi |wi−1)
i= 2

n

∏
3/8/18 52760 bayes & hmm

Conditionally Independent

In probability theory, two states X and Y are
conditionally independent given a third event Z
precisely if the occurrence or non-occurrence
of X and Y are independent events in their
conditional probability distribution given Z.

In other words,
P(X∩Y|Z) = P(X|Z) P(Y|Z)
Or equivalently, P(X|Y∩Z) = P(X|Z)

3/8/18 53760 bayes & hmm

Formal Statistics Definition
A Markov chain is a sequence of random variables X1, X2, X3, ...

with the Markov property, namely that, given the present state,
the future and past states are independent.

Formally, P(Xn+1=x|Xn=xn,…,X1=x1)=P(Xn+1=x|Xn=xn)

The possible values of Xi form a countable set S called the state
space of the chain.
(We will be restricting ourselves to finite sets.)

Markov chains are often described by a directed graph, where the
edges are labeled by the probabilities of going from one state to
the other states.

3/8/18 54760 bayes & hmm

Introduction to Probability
We describe a Markov chain as follows:

We have a set of states, S = {s1 , s2 , . . . , sr }.
The process starts in one of these states and moves successively from one

state to another. Each move is called a step.

If the chain is currently in state si , then it moves to state sj at the next step
with a probability denoted by pij , and this probability does not depend
upon which states the chain was in before the current state.

The probabilities pij are called transition probabilities.

The process can remain in the state it is in, and this occurs with
probability pii .

An initial probability distribution, defined on S, specifies the starting state.
Usually this is done by specifying a particular state as the starting
state. 3/8/18 55760 bayes & hmm

Land of Oz
According to Kemeny, Snell, and Thompson2, the Land of Oz

is blessed by many things, but not by good weather.

They never have two nice days in a row.
If they have a nice day, they are just as likely to have snow as

rain the next day.
If they have snow or rain, they have an even chance of having

the same the next day.
If there is change from snow or rain, only half of the time is

this a change to a nice day.

3/8/18 56760 bayes & hmm

Example Continued
With this information we form a Markov chain as

follows.
We take as states the kinds of weather R, N, and S.
From the above information we determine the transition

probabilities. These are most conveniently represented
in a square array as

€

R N S

P =

R
N
S

1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2

"

$
$ $

%

&

'
' '

3/8/18 57760 bayes & hmm

Hidden Markov Models
A hidden Markov model (HMM) is a statistical model in which the

system being modeled is assumed to be a Markov process
with unknown parameters, and the challenge is to determine the
hidden parameters from the observable parameters.

A HMM can be considered as the simplest dynamic Bayesian
network. (DBN means the arcs are directed. If the arcs aren’t
directed you have Markov Random Fields (MRFs) or Markov
networks)

In a regular Markov model, the state is directly visible to the
observer, and therefore the state transition probabilities are the
only parameters.

In a hidden Markov model, the state is not directly visible, but
variables influenced by the state are visible.

3/8/18 58760 bayes & hmm

HMMs Continued
Each state has a probability distribution over the

possible output tokens.

Therefore the sequence of tokens generated by an
HMM gives some information about the sequence of
states.

Hidden Markov models are especially known for their
application in temporal pattern recognition such as
speech, handwriting, gesture recognition, musical
score following and bioinformatics.

3/8/18 59760 bayes & hmm

Hidden Markov Model Graph

3/8/18 60760 bayes & hmm

Why Hidden Markov Models

•  http://www.cs.umd.edu/~djacobs/
CMSC828/ApplicationsHMMs.pdf

3/8/18 760 bayes & hmm 61

Trellis Layout

3/8/18 62760 bayes & hmm

Probability of HMM
The probability of observing a sequence Y = y(0),y(1),...,y(L − 1) of

length L is given by:

P(Y) = ΣX P(Y|X) P(X)

where the sum runs over all possible hidden node sequences X =
x(0),x(1),...,x(L − 1).

Brute force calculation of P(Y) is intractable for most real-life
problems, as the number of possible hidden node sequences is
going to be extremely high.

The calculation can however be sped up enormously using an
algorithm called the forward procedure.

3/8/18 63760 bayes & hmm

HMM CS Definition
A variant of a finite state machine having a set of states, Q,

an output alphabet, O, transition probabilities, A,
output probabilities, B, and initial state probabilities, Π.

The current state is not observable. Instead, each state
produces an output with a certain probability (B).

Usually the states, Q, and outputs, O, are understood, so an
HMM is said to be a triple, (A, B, Π).

3/8/18 64760 bayes & hmm

HMM Formal CS definition
A = {aij = P(qj at t+1 | qi at t)}, where P(x | y) is the

conditional probability of x given y, t ≥ 1 is time,
and qi ∈ Q. ���

Informally, A is the probability that the next state is qj
given that the current state is qi.

B = {bik = P(ok | qi)}, where ok ∈ O.
Informally, B is the probability that the output is ok given

that the current state is qi.
Π = {pi = P(qi at t=1)}.
3/8/18 65760 bayes & hmm

HMM Formal Statistics
Definition

States: A set of states S=s1,…,sn

Transition probabilities: A= a1,1,a1,2,…,an,n Each ai,j represents
the probability of transitioning from state si to sj.

Emission probabilities: A set B of functions of the form bi(ot)
which is the probability of observation ot being emitted by
si

Initial state distribution: πi is the probability that si is a start
state

3/8/18 66760 bayes & hmm

Hidden Markov Models
Summary

Frequently, patterns do not appear in isolation but as part of a
series in time - this progression can sometimes be used to
assist in their recognition.

Assumptions are usually made about the time based process -
a common assumption is that the process's state is
dependent only on the preceding N states - then we have
an order N Markov model.

The simplest case is N=1, first-order Markov Model.

3/8/18 67760 bayes & hmm

Stop here

3/8/18 760 bayes & hmm 68

Uses for Hidden Markov Models

Various examples exists where the process
states (patterns) are not directly observable,
but are indirectly, and probabilistically,
observable as another set of patterns - we
can then define a hidden Markov model -
these models have proved to be of great
value in many current areas of research,
notably speech recognition.

3/8/18 69760 bayes & hmm

How to use HMMs
Such models of real processes pose three problems that are

amenable to immediate attack; these are:
Evaluation : with what probability does a given model generate a

given sequence of observations. The forward algorithm solves
this problem efficiently.

Decoding : what sequence of hidden (underlying) states most
probably generated a given sequence of observations. The Viterbi
algorithm solves this problem efficiently.

Learning : what model most probably underlies a given sample of
observation sequences - that is, what are the parameters of such a
model. This problem may be solved by using the forward-
backward algorithm (or Baum Welch)

3/8/18 70760 bayes & hmm

Success of HMMs

HMMs have proved to be of great value in
analysing real systems.

Their usual drawback is the over-
simplification associated with the Markov
assumption
that a state is dependent only on predecessors,

and that this dependence is time independent.
3/8/18 71760 bayes & hmm

3 Main Problems - CS style
There are three canonical problems associated with

HMMs:･
–  Evaluation: Given the parameters of the model, compute

the probability of a particular output sequence. This problem
is solved by the forward algorithm.

–  Decoding: Given the parameters of the model, find the most
likely sequence of hidden states that could have generated a
given output sequence. This problem is solved by the Viterbi
algorithm.

–  Learning: Given an output sequence or a set of such
sequences, find the most likely set of state transition and
output probabilities. In other words, train the parameters of
the HMM given a dataset of sequences. This problem is
solved by the Baum-Welch algorithm, forward-backward
algorithm, EM algorithm.

3/8/18 72760 bayes & hmm

References
•  CMSC 723: Introduction to Computational Linguistics - University of

Maryland Institute for Advanced Computer Studies -
www.umiacs.umd.edu/~christof/courses/ cmsc723-fall04/lecture-notes/
Lecture5-hmm.ppt

•  Leeds - http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels
•  Wikipedia - http://en.wikipedia.org/wiki/Markov_chain
•  Nist - http://www.nist.gov/dads/HTML/markovchain.html
•  Introduction to Probability - Charles M Grimstead J Laurie Snell -

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/
probability_book/Chapter11.pdf

•  2 J. G. Kemeny, J. L. Snell, G. L. Thompson, Introduction to Finite
Mathematics, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 1974).

•  www.ncbioportal.org/ training/mod3/hiddenmark.html
•  http://www.ncbioportal.org/training/mod3/hmmer.html

3/8/18 73760 bayes & hmm

HMM 2

3/8/18 760 bayes & hmm 74

HMM Example���
http://en.wikipedia.org/wiki/Hidden_Markov_model

"HMMsequence" by Hakeem.gadi –
Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons –
http://commons.wikimedia.org/wiki/File:HMMsequence.svg#mediaviewer/File:HMMsequence.svg

Another HMM Example���
http://en.wikipedia.org/wiki/Hidden_Markov_model

"HMMGraph" by Terencehonles - Own work. Licensed under Public domain via Wikimedia Commons –
http://commons.wikimedia.org/wiki/File:HMMGraph.svg#mediaviewer/File:HMMGraph.svg

Yet Another HMM example���
http://en.wikipedia.org/wiki/Viterbi_algorithm

"An example of HMM" by Reelsun - By using open office draw.
Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons –
http://commons.wikimedia.org/wiki/File:An_example_of_HMM.png#mediaviewer/File:An_example_of_HMM.png

Evaluation - Forward Algorithm

The forward algorithm, in the context of a
hidden Markov model, is used to calculate a
'belief state': the probability of a state at a
certain time, given the history of evidence.

The forward algorithm is closely related to,
but distinct from, the Viterbi algorithm.

Evaluation - Finding the probability of an
observed sequence

Exhaustive search for solution
–  We want to find the probability of an observed

sequence given an HMM - that is, the parameters
(π,A,B) are known.

–  Consider the weather example; we have a HMM
describing the weather and its relation to the state of the
seaweed, and we also have a sequence of seaweed
observations.

–  Suppose the observations for 3 consecutive days are
(dry,damp,soggy) - on each of these days, the weather
may have been sunny, cloudy or rainy.

–  We can picture the observations and the possible
hidden states as a trellis.

Trellis

Trellis Description
Each column in the trellis shows the possible state of the weather
and each state in one column is connected to each state in the
adjacent columns.

Each of these state transitions has a probability provided by the
state transition matrix.

Under each column is the observation at that time; the probability
of this observation given any one of the above states is provided by
the confusion matrix.

It can be seen that one method of calculating the probability of the
observed sequence would be to find each possible sequence of the
hidden states, and sum these probabilities.

Brute Force Calculation
For the above example, there would be 33=27 possible
different weather sequences, and so the probability is

P(dry,damp,soggy | HMM) =
P(dry,damp,soggy | sunny,sunny,sunny) +
P(dry,damp,soggy | sunny,sunny ,cloudy) +
P(dry,damp,soggy | sunny,sunny ,rainy) +
P(dry,damp,soggy | rainy,rainy ,rainy)

Calculating the probability in this manner is computationally
expensive, particularly with large models or long sequences,
but we can use the time invariance of the probabilities to
reduce the complexity of the problem.

Problem 1: Probability of an Observation
Sequence - Evaluation

What is ?

The probability of a observation sequence is the sum of the
probabilities of all possible state sequences in the HMM.

Naïve computation is very expensive. Given T observations and N
states, there are NT possible state sequences.

Even small HMMs, e.g. T=10 and N=10, contain 10 billion
different paths

Solution to this (and problem 2) is to use dynamic programming

€

P(O | λ)

Bugs
•  Naive algorithm

1.  start a bug at state 0, time 0, holding value 0
2.  move each bug forward in time by making copies of it and

incrementing the value of each copy by the probability of the
transition and symbol emission

3.  go to 2 until all bugs have reached time T
4.  sum up values on all bugs

•  Clever recursion
–  adds a step between 2 and 3 above which says at each node

replace all the bugs at a state with a single bug carrying the sum
of their values

Reduction of complexity using
recursion

•  We will consider calculating the probability of
observing a sequence recursively given a HMM.

•  We will first define a partial probability, which is the
probability of reaching an intermediate state in the
trellis.

•  We then show how these partial probabilities are
calculated at times t=1 and t=n (> 1).

•  Suppose throughout that the T-long observed
sequence is

Partial Probabilities

Consider the trellis below showing the states
and first-order transitions for the observation
sequence dry,damp,soggy;

Intermediate States
We can calculate the probability of reaching an intermediate
state in the trellis as the sum of all possible paths to that state.

For example, the probability of it being cloudy at t=2 is
calculated from the paths;

Partial Probabilities
We denote the partial probability of state j at time t as t(j) -
this partial probability is calculated as;

t(j)= P(observation | hidden state is j) x
 P(all paths to state j at time t)

The partial probabilities for the final observation hold the
probability of reaching those states going through all possible
paths - e.g., for the previous trellis, the final partial
probabilities are calculated from the following paths

Sum of Partial Probabilities

It follows that the sum of these final partial probabilities is the
sum of all possible paths through the trellis, and hence is the
probability of observing the sequence given the HMM.

Reduction of Computational
Complexity

We can compare the computational complexity of
calculating the probability of an observation
sequence by exhaustive evaluation and by the
recursive forward algorithm.

We have a sequence of T observations, O.

We also have a Hidden Markov Model, (π,A,B),
with N hidden states.

Computational Complexity
An exhaustive evaluation would involve computing for all possible
execution sequences

the quantity

which sums the probability of observing what we do - note that the
complexity here is exponential in T.

•  Conversely, using the forward algorithm we can exploit knowledge of
the previous time step to compute information about a new one -
accordingly, the complexity will only be linear in T.

Forward Probabilities

What is the probability, given an HMM λ, that
at time t the state is i and the partial
observation o1, … ot has been generated?

αt(i) = P(o1…ot, qt=si | λ)

Visual Forward

€

α t (j) = α t−1(i)aij
i=1

N

∑
%

&
'

(

)
* b j (ot)

€

α t (i) = P(o1...ot , qt = si | λ)

Forward Recursive Function

Initialization:

Induction:

Termination:

€

α1(i) = π ibi(o1) 1≤ i ≤ N

€

α t (j) = α t−1(i)aij
i=1

N

∑
%

&
'

(

)
* b j (ot) 2 ≤ t ≤ T,1≤ j ≤ N

€

P(O | λ) = αT (i)
i=1

N

∑

Detailed Computational Complexity

In the naïve approach to solving problem 1 it
takes on the order of T*NT computations

The forward algorithm takes on the order of
N2T computations

Backward Algorithm

Analogous to the forward probability, just in
the other direction

What is the probability that given an HMM
and given the state at time t is i, the partial
observation ot+1 … oT is generated?

€

βt (i) = P(ot+1...oT |qt = si,λ)

Backward Visual

€

βt (i) = P(ot+1...oT |qt = si,λ)

€

βt (i) = aijb j (ot+1)βt+1(j)
j=1

N

∑
$

%
&
&

'

(
)
)

Backward Recursive Function

Initialization:

Induction:

Termination:

€

βT (i) =1, 1≤ i ≤ N

€

βt (i) = aijb j (ot+1)βt+1(j)
j=1

N

∑
$

%
&
&

'

(
)
)
t = T −1...1,1≤ i ≤ N

€

P(O | λ) = π i β1(i)
i=1

N

∑

Comparing Forward and
Backward

Notice that in the definitions above, the forward probability,
P(o1…ot, qt=si | λ), is a joint probability whereas the
backward probability, P(ot+1,…oT|qt=si,λ) is a conditional
probability.

This somewhat asymmetric definition is deliberate since it
allows the probability of state occupation to be determined by
taking the product of the two probabilities:

We will talk about this more during the Backward-Forward or
Baum-Welch algorithm.

€

α j (t)β j (t) = P(O,qt = s j | λ)

Summary
•  Our aim is to find the probability of a sequence of observations given a

HMM - Pr(observations |λ).
•  We reduce the complexity of calculating this probability by first

calculating partial probabilities ('s). These represent the probability of
getting to a particular state, s, at time t.
–  At time t = 1, the partial probabilities are calculated using the initial

probabilities (from the vector) and Pr(observation|state) (from the
confusion matrix);

–  At time t (> 1), the partial probabilites can be calculated using the partial
probabilities at time t-1.

•  This definition of the problem is recursive, and the probability of the
observation sequence is found by calculating the partial probabilities at
time t = 1, 2, ..., T, and adding all 's at t = T.

•  Notice that computing the probability in this way is far less expensive
than calculating the probabilities for all sequences and adding them.

Decoding
The solution to Problem 1 (Evaluation) gives us the
sum of all paths through an HMM efficiently.

For Problem 2 (Decoding), we want to find the path
with the highest probability.

We want to find the state sequence Q=q1…qT, such
that

€

Q = argmax
Q '

P(Q' |O,λ)

Viterbi Algorithm

The Viterbi algorithm is a dynamic
programming algorithm for finding the most
likely sequence of hidden states – called the
Viterbi path – that results in a sequence of
observed events, especially in the context of
Markov information sources and hidden
Markov models.

Viterbi Algorithm���
http://en.wikipedia.org/wiki/Viterbi_algorithm

"Viterbi animated demo" by Schiessl –
Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons –
http://commons.wikimedia.org/wiki/File:Viterbi_animated_demo.gif#mediaviewer/File:Viterbi_animated_demo.gif

Most Probably Sequence of Hidden
States

We often wish to take a particular HMM, and
determine from an observation sequence the most
likely sequence of underlying hidden states that
might have generated it.

We can use a picture of the execution trellis to
visualise the relationship between states and
observations.

Trellis

Maximising Probability
We can find the most probable sequence of hidden
states by listing all possible sequences of hidden
states and finding the probability of the observed
sequence for each of the combinations.

The most probable sequence of hidden states is that
combination that maximises

P(observed sequence | hidden state combination).

Brute Force Solution
For example, for the observation sequence in the trellis shown, the most
probable sequence of hidden states is the sequence that maximises :

P(dry,damp,soggy | sunny,sunny,sunny),
P(dry,damp,soggy | sunny,sunny,cloudy),
P(dry,damp,soggy | sunny,sunny,rainy),
P(dry,damp,soggy | rainy,rainy,rainy)

This approach is viable, but to find the most probable sequence by
exhaustively calculating each combination is computationally expensive.

As with the forward algorithm, we can use the time invariance of the
probabilities to reduce the complexity of the calculation.

Reducing complexity using
recursion

We will consider recursively finding the most probable sequence of
hidden states given an observation sequence and a HMM.

We will first define the partial probability, δ , which is the
probability of reaching a particular intermediate state in the trellis.

We then show how these partial probabilities are calculated at t=1
and at t=n (> 1).

These partial probabilities differ from those calculated in the
forward algorithm since they represent the probability of the most
probable path to a state at time t, and not a total.

Partial Probabilities

Consider the trellis below showing the states and
first order transitions for the observation sequence
dry,damp,soggy;

Most Probable Path

For each intermediate and terminating state in the
trellis there is a most probable path to that state.

So, for example, each of the three states at t=3 will
have a most probable path to it, perhaps like this;

Partial Best Paths
We will call these paths partial best paths.

Each of these partial best paths has an associated probability, the partial probability or
δ.

Unlike the partial probabilities in the forward algorithm, δ is the probablity of the one
(most probable) path to the state.

Thus δ(i,t) is the maximum probability of all sequences ending at state i at time t, and
the partial best path is the sequence which achieves this maximal probability.

Such a probability (and partial path) exists for each possible value of i and t.

In particular, each state at time t = T will have a partial probability and a partial best
path. We find the overall best path by choosing the state with the maximum partial
probability and choosing its partial best path.

Advantages of Virterbi

Using the Viterbi algorithm to decode an
observation sequence carries two important
advantages:

1. There is a reduction in computational
complexity by using the recursion - this
argument is exactly analogous to that used in
justifying the forward algorithm.

Advantages continued
2.  The Viterbi algorithm has the very useful property of

providing the best interpretation given the entire context
of the observations.

The Viterbi algorithm will look at the whole sequence before
deciding on the most likely final state, and then
`backtracking’ through the f pointers to indicate how it might
have arisen.

This is very useful in `reading through’ isolated noise garbles,
which are very common in live data.

Viterbi Algorithm

Similar to computing the forward probabilities, but
instead of summing over transitions from incoming
states, compute the maximum

Forward:

Viterbi Recursion:

€

α t (j) = α t−1(i)aij
i=1

N

∑
%

&
'

(

)
* b j (ot)

€

δt (j) = max
1≤ i≤N

δt−1(i)aij[] bj (ot)

Viterbi Recursive Function
Initialization:
Induction:

Termination:

Read out path:

€

δ1(i) = π ibi(o1) 1≤ i ≤ N

€

δt (j) = max
1≤ i≤N

δt−1(i)aij[] bj (ot)

€

ψt (j) = argmax
1≤ i≤N

δt−1(i)aij
&
' (

)
* +
2 ≤ t ≤ T,1≤ j ≤ N

€

p* =max
1≤ i≤N

δT (i)

€

qT
* = argmax

1≤ i≤N
δT (i)

€

qt
* =ψt+1(qt+1

*) t = T −1,...,1

Viterbi Summary
The Viterbi algorithm provides a computationally efficient way of
analysing observations of HMMs to recapture the most likely
underlying state sequence.

It exploits recursion to reduce computational load, and uses the
context of the entire sequence to make judgements, thereby
allowing good analysis of noise.

In use, the algorithm proceeds through an execution trellis
calculating a partial probability for each cell, together with a back-
pointer indicating how that cell could most probably be reached.

On completion, the most likely final state is taken as correct, and
the path to it traced back to t=1 via the back pointers.

Baum-Welch Algorithm
The Baum–Welch algorithm is used to find the
unknown parameters of a hidden Markov model
(HMM). It makes use of the forward-backward
algorithm and is named for Leonard E. Baum and
Lloyd R. Welch.

The Baum–Welch algorithm uses the well known
EM algorithm to find the maximum likelihood
estimate of the parameters of a hidden Markov
model given a set of observed feature vectors.

Purpose of Learning
The `useful' problems associated with HMMs are those of
evaluation and decoding - they permit either a measurement
of a model's relative applicability, or an estimate of what the
underlying model is doing (what `really happened').

It can be seen that they both depend upon foreknowledge of
the HMM parameters - the state transition matrix, the
observation matrix, and the vector.

There are, however, many circumstances in practical
problems where these are not directly measurable, and have
to be estimated - this is the learning problem.

Learning
Up to now we’ve assumed that we know the underlying
model

Often these parameters are estimated on annotated
training data, which has two drawbacks:

Annotation is difficult and/or expensive
Training data is different from the current data

We want to maximize the parameters with respect to the
current data, i.e., we’re looking for a model , such
that

€

λ = (A,B,π)

€

λ'= argmax
λ

P(O | λ)

€

λ'

How it Works
The forward-backward algorithm permits this estimate to be
made on the basis of a sequence of observations known to
come from a given set, that represents a known hidden set
following a Markov model.

An example may be a large speech processing database,
where the underlying speech may be modeled by a Markov
process based on known phonemes, and the observations may
be modeled as recognisable states (perhaps via some vector
quantisation), but there will be no (straightforward) way of
deriving empirically the HMM parameters.

A Rose by any other name…

Forward-Backward algorithm is also called

Baum-Welch algorithm which is a type of

EM algorithm

Forward-Backward Intuition
The forward-backward algorithm is not unduly hard to
comprehend, but is more complex in nature than the forward
algorithm and the Viterbi algorithm.

The algorithm proceeds by making an initial guess of the
parameters (which may well be entirely wrong) and then
refining it by assessing its worth, and attempting to reduce the
errors it provokes when fitted to the given data.

In this sense, it is performing a form of gradient descent,
looking for a minimum of an error measure.

Basis of Forward-Backward
It derives its name from the fact that, for each state in an
execution trellis, it computes the `forward' probability of
arriving at that state (given the current model approximation)
and the `backward' probability of generating the final state of
the model, again given the current approximation.

Both of these may be computed advantageously by exploiting
recursion, much as we have seen already.

Adjustments may be made to the approximated HMM
parameters to improve these intermediate probabilities, and
these adjustments form the basis of the algorithm iterations.

Baum-Welch

Unfortunately, there is no known way to
analytically find a global maximum, i.e., a
model , such that

But it is possible to find a local maximum

Given an initial model , we can always find
a model , such that

€

λ'= argmax
λ

P(O | λ)

€

P(O | λ') ≥ P(O | λ)

€

λ'

€

λ'

€

λ

Parameter Re-estimation

Use the forward-backward (or Baum-Welch)
algorithm, which is a hill-climbing algorithm

Using an initial parameter instantiation, the forward-
backward algorithm iteratively re-estimates the
parameters and improves the probability that given
observation are generated by the new parameters

What needs to be Re-estimated?

Three parameters need to be re-estimated:
–  Initial state distribution:
– Transition probabilities: ai,j

– Emission probabilities: bi(ot)
€

π i

Re-estimating Transition
Probabilites

What’s the probability of being in state si at
time t and going to state sj, given the current
model and parameters?

€

ξ t (i, j) = P(qt = si, qt+1 = s j |O,λ)

Visual Baum-Welch

€

ξ t (i, j) = P(qt = si, qt+1 = s j |O,λ)

€

ξ t (i, j) =
α t (i) ai, j b j (ot+1) βt+1(j)

α t (i) ai, j b j (ot+1) βt+1(j)
j=1

N

∑
i=1

N

∑

Transition re-estimation

The intuition behind the re-estimation
equation for transition probabilities is

Formally:

€

ˆ a i, j =

ξ t (i, j)
t=1

T−1

∑

ξ t (i, j ')
j '=1

N

∑
t=1

T−1

∑

€

ˆ a i, j =
expected number of transitions from state si to state sj

expected number of transitions from state si

State Probability

Defining

As the probability of being in state si, given
the complete observation O

We can say:

€

γ t (i) = ξ t (i, j)
j=1

N

∑

€

ˆ a i, j =

ξ t (i, j)
t=1

T−1

∑

γ t (i)
t=1

T−1

∑

Review of Probabilities
Forward probability:

The probability of being in state si, given the partial
observation o1,…,ot

Backward probability:
The probability of being in state si, given the partial

observation ot+1,…,oT

Transition probability:
The probability of going from state si, to state sj, given the

complete observation o1,…,oT

State probability:
The probability of being in state si, given the complete

observation o1,…,oT

€

α t (i)

€

βt (i)

€

ξ t (i, j)

€

γ t (i)

Initial State Re-estimation

Initial state distribution: is the probability that si
is a start state

Re-estimation is easy:

Formally:
€

ˆ π i = expected number of times in state si at time 1
€

π i

€

ˆ π i = γ1(i)

Emission Re-estimations
Emission probabilities are re-estimated as

Formally:

Where

NOTE: that here is the Kronecker delta function and is not
related to the in the discussion of the Viterbi algorithm!!

€

ˆ b i(k) =
expected number of times in state si and observe symbol vk

expected number of times in state si

€

ˆ b i(k) =

δ(ot ,vk)γ t (i)
t=1

T

∑

γ t (i)
t=1

T

∑

€

δ(ot ,vk) =1, if ot = vk, and 0 otherwise

€

δ

€

δ

The Updated Model

Coming from we get to
 by the following update rules:

€

λ = (A,B,π)

€

λ'= (ˆ A , ˆ B , ˆ π)

€

ˆ a i, j =

ξ t (i, j)
t=1

T−1

∑

γ t (i)
t=1

T−1

∑

€

ˆ b i(k) =

δ(ot ,vk)γ t (i)
t=1

T

∑

γ t (i)
t=1

T

∑

€

ˆ π i = γ1(i)

Product of two Probabilities
Notice that in the definitions above, the forward probability is a joint
probability whereas the backward probability is a conditional probability.

This somewhat asymmetric definition is deliberate since it allows the
probability of state occupation to be determined by taking the product of
the two probabilities.

From the definitions,

€

α j (t)β j (t) = P(O,qt = si | λ)

αt(i) = P(o1…ot, qt=si | λ)

€

βt (i) = P(ot+1...oT |qt = si,λ)

What is EM

The forward-backward algorithm is an instance of
the more general EM algorithm

–  The E Step: Compute the forward and backward
probabilities for a give model

–  The M Step: Re-estimate the model parameters

These two steps are repeated as necessary.

EM Algorithm
The EM algorithm [ALR77, RW84, GJ95, JJ94, Bis95,
Wu83] is a general method of finding the maximum-
likelihood estimate of the parameters of an underlying
distribution from a given data set when the data is incomplete
or has missing values.

There are two main applications of the EM algorithm.
–  The first occurs when the data has missing values, due to problems

with or limitations of the observation process.
–  The second occurs when optimizing the likelihood function is

analytically intractable but when the likelihood function can be
simplified by assuming the existence of and values for additional
but missing (or hidden) parameters. The latter application is more
common in the computational pattern recognition community.

REFERENCES

www.cs.toronto.edu/~roweis/notes/hmm.ps.gz

http://www.ee.columbia.edu/ln/LabROSA/
doc/HTKBook21/HTKBook.html

http://books.google.co.nz/books?id=BFnkm-
FpBAUC

Start from this slide

3/8/18 760 bayes & hmm 139

Monte Carlo Stuff

Computer Science 760
Patricia J Riddle

3/8/18 140760 bayes & hmm

Monte Carlo Markov Chain
(MCMC)

•  Monte Carlo – sampling

•  Markov Chain – finite automata with arrows
and probabilities

3/8/18 760 bayes & hmm 141

MCMC

•  Desired distribution as its equilibrium
distribution

•  State of chain after a large number of steps
is a sample of the desired distribution

3/8/18 760 bayes & hmm 142

MCMC

•  Quality of the sample improves as a function of
the number of steps

•  How many steps are needed to converge to a
stationary distribution with an acceptable error?

•  Only approximate – always some residual effect
of the starting position

3/8/18 760 bayes & hmm 143

MCMC Example

3/8/18 760 bayes & hmm 144

MCMC Example 2

•  No matter what the initial distribution,
•  After several iterations

•  It will stabilise at p(x) = (0.2, 0.4, 0.4)

3/8/18 760 bayes & hmm 145

Invariant Distribution
If stochastic transition matrix obeys the
following properties:

–  Irreducibility: For any state, there is a positive
probability of visiting all other states (the graph
is connected)

– Aperiodicity: the chain should not get trapped
in cycles

3/8/18 760 bayes & hmm 146

Application

•  Calculating multi-dimensional integrals
– Ensemble of walkers
– At each point where the walker steps, the

integrand value is counted towards the integral

3/8/18 760 bayes & hmm 147

Random Walk Algorithms
•  Move around equilibrium in relatively small steps, no

tendency for the steps to proceed in the same direction

•  Will take a long time to explore all of the space

•  Walker will often double back and cover ground already
covered

•  Metropolis-Hastings, Gibbs Sample, Slice sampling,
Multiple-try Metropolis

3/8/18 760 bayes & hmm 148

Avoiding random walks

•  Prevent walker from doubling back

•  Harder to implement, faster convergence

•  (only try to avoid random walks)
–  Successive over-relaxation
–  Hybrid Monte Carlo – Hamilton Monte Carlo, uses

momentum and Hamilton dynamics to take larger steps

3/8/18 760 bayes & hmm 149

Monte Carlo Tree Search

•  Used to estimate min-max probability

3/8/18 760 bayes & hmm 150

Problems with Go

Go
•  Strongest programs weaker than amateur

players

•  No Good Static Evaluation Function for Go

Monte Carlo Tree Search

•  Random playouts

Random playouts
store # wins and # plays

Make a move

Connect 4 Demo

http://beej.us/blog/data/monte-carlo-
method-game-ai/

Monte Carlo Tree Search

3/8/18 760 bayes & hmm 156

Main Points of MCTS

•  Evaluation of moves in MCTS converges to
minimax evaluation

•  No explicit evaluation function

3/8/18 760 bayes & hmm 157

Exploration vs Exploitation

•  Converges to perfect play for (k to infinity)
–  If games with finite depth

– Exploration and exploitation

3/8/18 760 bayes & hmm 158

UCT Formula
(Upper confidence bound)

•  Exploration and exploitation

Wi wins (from move i)
Ni playouts (from move i)
c exploration parameter (√2 or chosen empirically)
t playouts (all moves)

UCBi =
Wi

Ni

+ c log t
Ni

Computer Go since MCTS

3/8/18 760 bayes & hmm 160

Improvements to MCTS ���
by Jared Newman

•  Using a DAG
– Split aggregate

•  Learning over multiple Runs

3/8/18 760 bayes & hmm 161

DAG aggregation-split

3/8/18 760 bayes & hmm 162

Results with Learning

3/8/18 760 bayes & hmm 163

Markov Random Fields
A Markov random field is a set of random variables having a Markov
property described by an undirected graph.

A Markov random field is similar to a Bayesian network in its
representation of dependencies; the differences being that Bayesian
networks are directed and acyclic, whereas Markov networks are
undirected and may be cyclic.

Thus, a Markov network can represent certain dependencies that a
Bayesian network cannot (such as cyclic dependencies); on the other
hand, it can't represent certain dependencies that a Bayesian network can
(such as induced dependencies).

3/8/18 760 bayes & hmm 164

Induced Dependencies

3/8/18 760 bayes & hmm 165

There are dependencies that an MRF cannot represent.

One of these is the induced dependency.

If the child node is observed and has multiple parents, in a
Bayesian network (BN) information can flow between the
parent nodes.

In an MRF, no information can flow across known nodes.

Stop again

3/8/18 760 bayes & hmm 166

Markov Random Fields
When the probability distribution is strictly positive, it is also referred to
as a Gibbs random field.

In the domain of artificial intelligence, a Markov random field is used to
model various low- to mid-level tasks in image processing and computer
vision.[2]

For example, MRFs are used for image restoration, image completion,
segmentation, image registration, texture synthesis, super-resolution,
stereo matching and information retrieval.

3/8/18 760 bayes & hmm 167

Markov Random Field���
http://en.wikipedia.org/wiki/Markov_random_field���

3/8/18 760 bayes & hmm 168

"Markov random field example". Via Wikipedia –
http://en.wikipedia.org/wiki/File:Markov_random_field_example.png#mediaviewer/File:Markov_random_field_example.png

Markov Random Field
Given an undirected graph G = (V, E), a set of random
variables X = (Xv)v ∈ V indexed by V form a Markov random
field with respect to G if they satisfy the local Markov
properties:

The three Markov properties are not equivalent to each other
at all.

In fact, the Local Markov property is stronger than the
Pairwise one, while weaker than the Global one.

3/8/18 760 bayes & hmm 169

Pairwise Markov Property
Pairwise Markov property: Any two non-adjacent variables are
conditionally independent given all other variables:

Xu ⫫ Xv | XV\{u,v} if {u,v} ∉ E

3/8/18 760 bayes & hmm 170

Local Markov Property
Local Markov property: A variable is conditionally independent of all
other variables given its neighbors:

Xv ⫫ XV\cl(v) | Xne(v)
where ne(v) is the set of neighbors of v, and cl(v) = {v} ∪ ne(v) is the
closed neighbourhood of v.

3/8/18 760 bayes & hmm 171

Global Markov property
Global Markov property: Any two subsets of variables are conditionally
independent given a separating subset:

XA ⫫ XB | XS
where every path from a node in A to a node in B passes through S.

3/8/18 760 bayes & hmm 172

Bayesian to Markov
To convert from a Bayesian network to a Markov network we follow three
steps:
1.  Maintain the structure of the Bayesian network.
2.  Eliminate directionality by making all edges undirected.
3.  Moralize

3/8/18 760 bayes & hmm 173

Markov to Bayesian

•  Data flow problems

3/8/18 760 bayes & hmm 174

Markov to Bayesian Solution
To overcomes this, you perform three steps:
1.  Maintain the structure of the Markov network.
2.  Triangulate the graph to guarantee all dependency representations.
3.  Add directionality.

3/8/18 760 bayes & hmm 175

Start again

3/8/18 760 bayes & hmm 176

Markov Decision Processes ���
http://en.wikipedia.org/wiki/Markov_decision_process

3/8/18 760 bayes & hmm 177

"Markov Decision Process example" by MistWiz –
Own work. Licensed under Public domain via Wikimedia Commons –
http://commons.wikimedia.org/wiki/File:Markov_Decision_Process_example.png#mediaviewer/File:Markov_Decision_Process_example.png

MDP Definition
A Markov decision process is a 4-tuple (S,A,P.(.,.),R.(.,.)),
where
•  S is a finite set of states,
•  A is a finite set of actions (alternatively, As is the finite set of actions

available from state s),
•  Pa(s,s') = Pr(st+1=s' | st = s, at=a) is the probability that action a in

state s at time t will lead to state s' at time t+1,
•  Ra(s,s') is the immediate reward (or expected immediate reward)

received after transition to state s' from state s.

(Note: The theory of Markov decision processes does not state that S or A
are finite, but the basic algorithms below assume that they are finite.)
3/8/18 760 bayes & hmm 178

Problem
The core problem of MDPs is to find a "policy" for the decision maker: a
function π that specifies the action π(s) that the decision maker will
choose when in state s.

Note that once a Markov decision process is combined with a policy in
this way, this fixes the action for each state and the resulting combination
behaves like a Markov chain.

3/8/18 760 bayes & hmm 179

Policy
The goal is to choose a policy π that will maximize some cumulative
function of the random rewards, typically the expected discounted sum
over a potentially infinite horizon:

 (where we choose at = π(st))

•  where 𝛾 is the discount factor and satisfies 0 ≤ 𝛾 < 1. (For example, 𝛾
= 1/(1+r) when the discount rate is r.) 𝛾 is typically close to 1.

Because of the Markov property, the optimal policy for this particular
problem can indeed be written as a function of s only, as assumed above.

3/8/18 760 bayes & hmm 180

γ t

t=0

∞

∑ Rat (st, st+1)

Algorithms
MDPs can be solved by linear programming or dynamic programming.
We present the latter approach.

Suppose we know the state transition function P and the reward function
R, and we wish to calculate the policy that maximizes the expected
discounted reward.

The standard family of algorithms to calculate this optimal policy requires
storage for two arrays indexed by state:

value V, which contains real values, and
policy π which contains actions.

At the end of the algorithm, π will contain the solution and V(s) will
contain the discounted sum of the rewards to be earned (on average) by
following that solution from state s.
3/8/18 760 bayes & hmm 181

The Steps
The algorithm has the following two kinds of steps, which are repeated in
some order for all the states until no further changes take place. They are
defined recursively as follows:

Their order depends on the variant of the algorithm; one can also do them
for all states at once or state by state, and more often to some states than
others. As long as no state is permanently excluded from either of the
steps, the algorithm will eventually arrive at the correct solution.

3/8/18 760 bayes & hmm 182

π (s):=argmax
a

Pa (s, !s)(Ra (s, !s)+γV (!s))
!s
∑
#
$
%

&
'
(

V (s):= Pπ (s)
!s
∑ (s, !s)(Rπ (s) (s, !s)+γV (!s))

Partial Observability
The solution above assumes that the state s is known when action is to be
taken; otherwise π(s) cannot be calculated. When this assumption is not
true, the problem is called a partially observable Markov decision process
or POMDP.

http://en.wikipedia.org/wiki/
Partially_observable_Markov_decision_process

Burnetas, A.N. and M. N. Katehakis. "Optimal Adaptive Policies for
Markov Decision Processes, Mathematics of Operations Research, 22,(1),
1995.

3/8/18 760 bayes & hmm 183

Reinforcement Learning
If the probabilities or rewards are unknown, the problem is one of
reinforcement learning (Sutton and Barto, 1998).

For this purpose it is useful to define a further function, which corresponds to
taking the action a and then continuing optimally (or according to whatever
policy one currently has):

While this function is also unknown, experience during learning is based on
(s, a) pairs (together with the outcome s'); that is, "I was in state s and I tried
doing a and s' happened"). Thus, one has an array Q and uses experience to
update it directly. This is known as Q‑learning.

Sutton, R. S. and Barto A. G. Reinforcement Learning: An Introduction. The MIT
Press, Cambridge, MA, 1998.
3/8/18 760 bayes & hmm 184

Q(s,a)= Pa (s, !s)
!s
∑ (Ra (s, !s)+γV (!s))

Reinforcement Learning
Reinforcement learning can solve Markov decision processes without
explicit specification of the transition probabilities; the values of the
transition probabilities are needed in value and policy iteration.

In reinforcement learning, instead of explicit specification of the transition
probabilities, the transition probabilities are accessed through a simulator
that is typically restarted many times from a uniformly random initial
state.

Reinforcement learning can also be combined with function
approximation to address problems with a very large number of states.

3/8/18 760 bayes & hmm 185

References
http://en.wikipedia.org/wiki/Markov_random_field

https://vv.cs.byu.edu/facwiki/scraped-cs677sp10/cs677sp10/index.php/
Undirected_Models.html#Monte_Carlo_Markov_Chain_.28MCMC.29

http://www.cs.princeton.edu/courses/archive/spr06/cos598C/papers/
AndrieuFreitasDoucetJordan2003.pdf

http://en.wikipedia.org/wiki/Markov_decision_process

3/8/18 760 bayes & hmm 186

Questions you should be able to
answer – Day 1

•  What is the intuition behind Bayes theorem?
•  What is the difference between a maximum a posteriori

hypothesis and a maximum likelihood hypothesis and a
minimum description length hypothesis?

•  What are the benefits and drawbacks of naïve bayes?
•  What is a Markov chain is and what is the Markov

Property?
•  What is difference between a hidden Markov model and a

Markov chain?

3/8/18 760 bayes & hmm 187

Questions you should be able to
answer – Day 2

•  What is a MCMC algorithm?
•  What is Monte Carlo Tree Search?
•  What is the difference between a Markov

Random Field and a Bayesian Network?
•  What is a Markov Decision Process?
•  What is a Partially Observable Markov

Decision Process?

3/8/18 760 bayes & hmm 188

