Cryptographic Standards and Protocols

An Overview

Prepared by Andrew Colarik, 2014 Lightly edited by Clark Thomborson, 2015-6. V1.21 2017-08-14.

Overview

- Kerberos
- X.509
- X.500
- IPv6
- SSL
- TLS
- IPSec

- Kerberos is a network authentication protocol. It is designed to provide strong authentication for client/server applications by using secret-key cryptography.
- Before a network connection is opened between two entities, Kerberos establishes a shared secret key through a Ticket Granting Server (TGS) that is used for authenticating the parties in the subsequent communications
- Versions of Kerberos also have extensions to utilize public/private keys for authentication
- Versions 4 and 5 (RFC 1510) are in use today
 - v4 has technical deficiencies
 - <u>http://www.isi.edu/div7/publication_files/evolution_of_kerberos.pdf</u>

Category: Authentication

- It provides a centralized private-key third-party authentication in a distributed network
 - Allows users access to services distributed through a network without needing to trust all workstations
 - All trust is handled through a central authentication server
 - Implemented using an authentication protocol based on Needham-Schroeder

- Kerberos environment consists
 - A Kerberos server
 - A number of clients, all registered with the server
 - Application servers, sharing keys with the Kerberos server
 - Termed a realm
 - Typically a single administrative domain
 - If multiple realms, their Kerberos servers must share keys and trust
 - Authentication Server (AS)
 - Users initially negotiate with AS to identify self
 - AS provides a non-corruptible authentication credential
 - Ticket Granting Ticket (TGT)
 - Ticket Granting server (TGS)
 - Users subsequently request access to other services from TGS on basis of users TGT
 - Uses a complex protocol using DES

(authenticated with TGT)

X.509

- To facilitate the identification and security of keys in PKI, a Certificate Authority (CA) is used to authenticate the public key by digitally signing it
 - This is known as a digital certificate
- The validation and invalidation process (authentication) of digital certificates is handled by the Certificate Authority, and is governed by the X.509 de-facto standard.
 - Specifies the semantics of certificates and certificate revocation lists for the Internet PKI

X.500

- The X.500 standard is a global directory service that is based on a replicated distributed database
- Programs access the directory services using the X/Open Directory Service (XDS) APIs.
- The XDS API's permit programs to read, compare, update, add, and remove directory entries; list directories; and search for entries based on attributes, while authenticating these activities.
- There are varieties of X.500 products (i.e. Directory Access Protocols) available, and the latest version is LDAP.
 - Lightweight Directory Access Protocol (LDAP) provides the same functions as DAP except it reduces overheads through bypassing much of the session and presentation layers using Distinguished Names (DN)

LDAP

- The Lightweight Directory Access Protocol is an open, vendorneutral, industry standard application protocol for accessing and maintaining distributed directory information services over an Internet Protocol network.
- Directory services play an important role in developing intranet and Internet applications by allowing the sharing of information about users, systems, networks, services, and applications throughout the network.
 - provide any organized set of records
 - often with a hierarchical structure such as a corporate email directory
- A common usage of LDAP is to provide a single-sign-on where one password for a user is shared between many services

http://www.ietf.org/rfc/rfc4511.txt

Category: Authentication

LDAP

LDAP Data Interchange Format (LDIF)

dn: cn=John Doe,dc=example,dc=com cn: John Doe givenName: John sn: Doe telephoneNumber: +1 888 555 6789 telephoneNumber: +1 888 555 1232 mail: john@example.com manager: cn=Barbara Doe,dc=example,dc=com objectClass: inetOrgPerson objectClass: organizationalPerson objectClass: person objectClass: top

IPv6

- The proposed standard Internet Protocol version 6 (IPv6) is the next generation of IP and will eventually replace IPv4.
 - Currently being transitioned throughout the Internet and is backward compatible with version 4.
- IPv6 provides the following added features
 - An increase from the 32-bit address space to 128-bit
 - Provisions for unicast, multicast, and anycast
 - An extension Authentication Header (AH) which provides authentication and integrity (without confidentiality) to IPv6 datagrams
 - An IPv6 Encapsulating Security Header (ESH) which provides integrity and confidentiality to datagrams

http://tools.ietf.org/html/rfc2460

Category: Data Integrity

Source: https://en.wikipedia.org/wiki/File:Ipv6_address_leading_zeros.svg

												Fixe	d ł	ne	eader	for	rma	ıt																
Offsets	Octet	0						1								2							3											
Octet	Bit	0 1 2 3 4 5 6 7							8	9	9 10	11	ŀ	12 13	14	4 1	5 16	; ·	17 18	1	9	20	21	22	2	3 24	1	25 2	6 2	7	28 2	9	30 31	
0	0	Version Traffic Class Flow Label																																
4	32		Payload Length Next Header Hop Limit																															
8	64																																	
12	96																																	
16	128		Source Address																															
20	160																																	
24	192																																	
28	224															- 41		lian																
32	256														De	su	ma	ION F	40	aress	\$													
36	288																																	

SSL

- Secure Socket Layer (SSL) is a security socket connection that provides a security layer at the transport level between the TCP/IP transport and sockets.
- The objective is to securely transmit from one site to another without involving the applications that invoke it
- The SSL protocol provides a certificate-based server authentication, private client-server communications using Rivest-Shamir-Adleman (RSA) encryption and message integrity checks.
- The SSL client generates a secret key for one session that is encrypted using the server's public key.
 - The session key is forwarded to the server and used for communication between the client and the server.

http://tools.ietf.org/html/rfc6101

Category: Data Confidentiality

SSL

Basic properties

- The connection is private.
 - Encryption is used after an initial handshake to define a secret key.
 - Symmetric cryptography is used for data encryption.
 - DES, 3DES, RC4
- The peer's identity can be authenticated using asymmetric, or public key, cryptography.
 - RSA, DSS
- The connection is reliable.
 - Message transport includes a message integrity check using a keyed Message Authentication Code (MAC) [RFC2104].
 - Secure hash functions (e.g., SHA, MD5) are used for MAC computations.

SSL

Transport Layer Security (TLS)

- "TLS versions 1.0, 1.1, and 1.2, and SSL 3.0 are very similar" [http://tools.ietf.org/html/rfc5246, The Transport Layer Security (TLS) Protocol, Version 1.2, 2008].
 - There are many minor differences between these protocols, but browsers and servers are often configured to "rollback" to an earlier protocol in this family – if their communication partner requests this.
 - Attackers may exploit the differences and the rollbacks, see <u>https://www.ietf.org/proceedings/84/slides/slides-84-tls-4.pdf</u>
- Most experts advise against using the older protocols.
 - Qualys deprecates any browser that accepts SSL2.0, see <u>https://www.ssllabs.com/ssltest/viewMyClient.html</u> and <u>https://www.ssllabs.com/projects/rating-guide/</u>
- "SSL/TLS is a deceptively simple technology.
 - "It is easy to deploy, and it just works . . . except that it does not, really.
 - The first part is true—SSL is easy to deploy—but it turns out that it is not easy to deploy correctly." [<u>https://www.ssllabs.com/projects/best-practices/</u>]

Wikipedia's Current Advice on Cipher Selection in SSL/TLS

	Cinhan	Cipiter Sec	anty again								
	Cipner				Protocol vers						
Туре	Algorithm	Nominal strength (bits)	SSL 2.0	SSL 3.0 [n 1][n 2][n 3][n 4]	TLS 1.0 [n 1][n 3]	TLS 1.1 [n 1]	TLS 1.2 [n 1]	TLS 1.3 (Draft)	Status		
	AES GCM ^{[33][n 5]}		N/A	N/A	N/A	N/A	Secure	Secure			
	AES CCM[34][n 5]	256 129	N/A	N/A	N/A	N/A	Secure	Secure			
	AES CBC ^[n 6]	230, 120	N/A	N/A	Depends on mitigations	Secure	Secure	N/A	-		
	Camellia GCM ^{[35][n 5]}		N/A	N/A	N/A	N/A	Secure	Secure			
	Camellia CBC ^{[36][n 6]}	256, <mark>1</mark> 28	N/A	N/A	Depends on mitigations	Secure	Secure	N/A	Defined for TLS 1.2 in		
Block cipher	ARIA GCM ^{[37][n 5]}		N/A	N/A	N/A	N/A	Secure	Secure	NI CS		
with mode of	ARIA CBC ^{[37][n 6]}	256, <mark>1</mark> 28	N/A	N/A	Depends on mitigations	ands on Secure Secure N/A		N/A			
operation	SEED CBC ^{[36][n 6]}	128	N/A	N/A	Depends on mitigations	Secure	Secure	N/A	-		
	3DES EDE CBC ^{[n 6][n 7]}	112 ^[n 8]	Insecure	Insecure	Insecure	Insecure	Insecure	N/A	-		
	GOST 28147-89 CNT ^{[32][n 7]}	256	N/A	N/A	Insecure	Insecure	Insecure		Defined in RFC 4357		
	IDEA CBC ^{[n 6][n 7][n 9]}	128	Insecure	Insecure	Insecure	Insecure	N/A	N/A	Demound from TLO 4.0		
		56	Insecure	Insecure	Insecure	Insecure N/A N/A		N/A	Removed from TLS 1.2		
	DESCECEMENT	40 ^[n 10]	Insecure	Insecure	Insecure	N/A	N/A	N/A	Forbidden in TLS 1.1		
	RC2 CBC ^{[n 6][n 7]}	40 ^[n 10]	Insecure	Insecure	Insecure	N/A	N/A	N/A	and later		
	ChaCha20-Poly1305 ^{[43][n 5]}	256	N/A	N/A	N/A	N/A	Secure	Secure	Defined for TLS 1.2 in RFCs		
Stream cipher	a a (p. 11)	128	Insecure	Insecure	Insecure	Insecure	Insecure	N/A	Prohibited in all		
	RC4 ⁽ⁱ⁾ (i)	40 ^[n 10]	Insecure	Insecure	Insecure	N/A	N/A	N/A	RFC 7465		
None	Null ^[n 12]	ক	N/A	Insecure	Insecure	Insecure	Insecure	Insecure	Defined for TLS 1.2 in RFCs		

http://en.wikipedia.org/wiki/Transport Layer Security, 14 August 2017

Wikipedia's 2016 Advice on Cipher Selection in SSL/TLS

Cipher Type Algorithm Strengtl (bits) AES GCM ^{[24][n 5]} 256, 124 AES CBC ^[n 6] 256, 124 Camellia GCM ^{[26][n 5]} 256, 124 AEIA GCM ^{[26][n 5]} 256, 124											
Туре	Algorithm	Strength (bits)	SSL 2.0	SSL 3.0 [n 1][n 2][n 3][n 4]	TLS 1.0 [n 1][n 3]	TLS 1.1 [n 1]	TLS 1.2 [n 1]	TLS 1.3 (Draft)	Status		
	AES GCM ^{[24][n 5]}		N/A	N/A	N/A	N/A	Secure	Secure			
	AES CCM ^{[25][n 5]}	256, 128	N/A	N/A	N/A	N/A	Secure	Secure			
	AES CBC ^[n 6]		N/A	N/A	Depends on mitigations	Secure	Secure	N/A			
	Camellia GCM ^{[26][n 5]}	056 409	N/A	N/A	N/A	N/A	Secure	Secure			
	Camellia CBC ^{[27][n 6]}	206, 120	N/A	N/A	Depends on mitigations	Secure	Secure	N/A	Defined for TLS 1.2		
	ARIA GCM ^{[28][n 5]}	256 129	N/A	N/A	N/A	N/A	Secure	Secure	in RFCs		
Block cipher	ARIA CBC ^{[28][n 6]}	236, 120	N/A	N/A	Depends on mitigations	n mitigations Secure Secure		N/A			
with	SEED CBC ^{[29][n 6]}	128	N/A	N/A	Depends on mitigations	Secure	Secure	N/A			
mode of operation	3DES EDE CBC ^[n 6]	112 ^[n 7]	Insecure	Insecure	Low strength, Depends on mitigations	Low strength	Low strength	N/A			
	GOST 28147-89 CNT ^[23]	256	N/A	NVA	Secure	Secure	Secure		Proposed in RFC drafts		
	IDEA CBC ^{[n 6][n 8]}	<mark>1</mark> 28	Insecure	Insecure	Depends on mitigations	Secure	N/A	N/A	Removed from TLS		
	DES CROIN 61/n 81	56	Insecure	Insecure	Insecure	Insecure	N/A	N/A	1.2		
	DESCEC	40 ^[n 9]	Insecure	Insecure	Insecure	N/A	N/A	N/A	Forbidden in TLS		
	RC2 CBC ^[n 6]	40 ^[n 9]	Insecure Insecure		Insecure	N/A	N/A	N/A	1.1 and later		
Stream cipher	ChaCha20-Poly1305 ^{[33][n 5]}	256	N/A	N/A	N/A	N/A	Secure	Secure	Defined for TLS 1.2 in RFCs		
	PC4[n 10]	128	Insecure	Insecure	Insecure	Insecure	Insecure	N/A	Prohibited in all		
	KC4 ^e ····	40 ^[n 9]	Insecure	Insecure	Insecure	N/A	N/A	N/A	versions of TLS		
None	Null ^(n 11)	-	N/A	Insecure	Insecure	Insecure	Insecure	Insecure	Defined for TLS 1.2 in RFCs		

http://en.wikipedia.org/wiki/Transport Layer Security, 27 July 2016

Wikipedia's 2014 Advice on Cipher Selection in SSL/TLS

	Cipher			Pro	otocol version		
Type \$	Algorithm +	Strength (bits) \$	SSL 2.0	SSL 3.0 [note 1][note 2][note 3]	TLS 1.0 [note 1][note 3]	TLS 1.1 ¢ [note 1]	TLS 1.2 ¢ [note 1]
	AES CBC ^[note 4]		N/A	N/A	Depends on mitigations	Secure	Secure
	AES GCM ^{[21][note 5]}	128, 256	N/A	N/A	N/A	N/A	Secure
	AES CCM ^{[22][note 5]}		N/A	N/A	N/A	N/A	Secure
	CAMELLIA CBC ^{[23][note 4]}	109 050	N/A	N/A	Depends on mitigations	Secure	Secure
	CAMELLIA GCM ^{[24][note 5]}	128, 296	N/A	N/A	N/A	N/A	Secure
Block cipher	SEED CBC ^{[25][note 4]}	128	N/A	N/A	Depends on mitigations	Secure	Secure
with	ARIA CBC ^{[26][note 4]}	100 050	N/A	N/A	Depends on mitigations	Secure	Secure
mode of	ARIA GCM ^{[26][note 5]}	128, 256	N/A	N/A	N/A	N/A	Secure
operation	IDEA CBC[note 4][note 6]	128	Insecure	Depends on mitigations	Depends on mitigations	Secure	N/A
	3DES EDE CBC ^[note 4]	112 ^[note 7]	Insecure	Low strength, Depends on mitigations	Low strength, Depends on mitigations	Low strength	Low strength
	DES CRC[note 4][note 6]	56	Insecure	Insecure	Insecure	Insecure	N/A
	DES CBC. A 7	40 ^[note 8]	Insecure	Insecure	Insecure	N/A	N/A
	RC2 CBC ^[note 4]	40 ^[note 8]	Insecure	Insecure	Insecure	N/A	N/A
	CHACHA20+POLY1305 ^{[30][note 5]}	256	N/A	N/A	N/A	N/A	Secure
Stream cipher	Pc/Inote 9]	128	Insecure	Insecure	Insecure	Insecure	Insecure
	NU4* -	40 ^[note 8]	Insecure	Insecure	Insecure	N/A	N/A
no encryption	NULL	-	N/A	Insecure	Insecure	Insecure	Insecure

http://en.wikipedia.org/wiki/Transport Layer Security, 1 August 2014

A Lighthearted View

- Question at https://www.schneier.com/blog/archives/2013/02/really_clever_t.html:
 - "It's probably fair to say that TLS has accrued too many options and versions to remain secure overall.
 - "Time to throw it out and build a new protocol that avoids all the problems identified with TLS over the years.
 - "Who'll go first?"
- Answer: ... Time for obligatory xkcd: <u>http://xkcd.com/927/</u>

- Short for IP Security, a set of protocols developed by the IETF to support the secure exchange of packets at the IP layer.
 - IPsec has been deployed widely to implement Virtual Private Networks (VPNs).
- For IPsec to work, the sending and receiving devices must share a public key.
 - Internet Security Association and Key Management Protocol/Oakley (ISAKMP/Oakley) protocol.
 - Allows the receiver to obtain a public key and authenticate the sender using digital certificates.

- IPSec may be used to protect one or more paths between two of any combination of hosts and/or security gateways (routers, firewalls, etc).
 - This is facilitated through the use of its Authentication Header (AH), and its Encapsulating Security Payload (ESP), both of which are algorithm independent.
 - The AH is used to authenticate the origin of the packets and the ESP encapsulating the content within the packets
- IPsec supports two encryption modes
 - Transport mode encrypts only the data portion (payload) of each packet, but leaves the header untouched.
 - Tunnel mode encrypts both the header and the payload.
 - On the receiving side, an IPSec-compliant device decrypts each packet.

Authentication Header (AH)

• IKE-Related Output (VeriSign CA enrollment)

dt1-45a#show crypto key mypubkey rsa

% Key pair was generated at: 11:31:59 PDT Apr 9 1998

Key name: dt1-45a.cisco.com

Usage: Signature Key

Key Data:

305C300D 06092A86 4886F70D 01010105 00034B00 30480241 00C11854 39A9C75C 4E34C987 B4D7F36C A058D697 13172767 192166E1 661483DD 0FDB907B F9C10B7A CB5A034F A41DF385 23BEB6A7 C14344BE E6915A12 1C86374F 83020301 0001 % Key pair was generated at: 11:32:02 PDT Apr 9 1998

Key name: dt1-45a.cisco.com

Usage: Encryption Key

Key Data:

305C300D 06092A86 4886F70D 01010105 00034B00 30480241 00DCF5AC 360DD5A6 C69704CF 47B2362D 65123BD4 424B6FF6 AD10C33E 89983D08 16F1EA58 3700BCF9 1EF17E71 5931A9FC 18D60D9A E0852DDD 3F25369C F09DFB75 05020301 0001

http://www.cisco.com/c/en/us/support/docs/security-vpn/ipsec-negotiation-ike-protocols/16439-IPSECpart8.html

Final Thoughts

- There are many many many more protocols and standards than presented here
 - You can spend an entire lifetime studying this stuff
 - Many folks have done so...
- Lots of discussion... which is the point.
 - Important security protocols are either implementations of standards, or are de-facto standards.
 - Standards can be vague, biased or ineffective; with multiple versions
- Don't take anything as the absolute unchanging truth
 - Read the archival sources e.g. <u>http://www.ietf.org/rfc.html</u>