Security In the Cloud

Giovanni Russello g.russello@auckland.ac.nz

What will you learn?

What cloud computing is
Which are the security shortcomings
An Encrypted Search Scheme supporting SQL-like encrypted queries

Computing as an Utility

In John McCarthy 1960 opinioned: "computation may someday be organized as a *public utility*."

What is Cloud Computing?

Appearance of infinite resources on demand No need to plan ahead for load surges Outsourcing is more convenient – One hour on 1000 servers = 1000 hours in one server Flexible Pay-as-you-go model Processing by the hour No need for up-front commitments Small and Medium Companies can get very reliable IT infrastructures Based on Armbrust et al. - Communications April 2010

Some Definitions

Cloud Computing refers to:
The software offered as Internet services
The hardware and system software used for providing the services

Cloud Layers

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (laaS)

Private vs Public Cloud

- Private cloud refers to internal datacentres of an organisation
- Public cloud refers to datacentres made available to the general public with a payas-you-go model

As an analogy

- A semiconductor fabrication line costs over \$3 Billions
- Only big players in the market could afford one (Intel, Samsung)
- Then came companies that build chips for others
- Small companies, like nVidia, can capitalise on the chip design without the needs of buying the fab-lines

Who are the big Cloud players?

Amazon
Google
Ebay
Microsoft

Big datacentres + large-scale software already available

The Cloud Economics

 Elasticity: Shifting the risk to the Cloud provider

Pay-as-you-go model avoids:
 – Underprovisioning
 – Overprovisioning

Careless Computing?

According to *Richard Stallman*: "It's stupidity. It's worst than stupidity" "I think that marketers like cloud computing because it is devoid of substantive meaning. [] it's an attitude: 'Let any Tom, Dick and Harry hold your data, let any Tom, Dick and Harry do your computing for you (and *control it*).' Perhaps the term '*careless computing*' would suit it better."

Storm in the Clouds

Major Security Challenges:
Availability of Service
Data Lock-In
Data Confidentiality

Service Availability

 A cloud computing service by a single provider represents a Single Point of Failure

The provider can go out of business

Data Lock-In

 Cloud Computing API are still proprietary
 Not possible to move from one provider to another

Confidentiality in the Cloud

- Data Confidentiality represents the main obstacle to the adoption of cloud computing
 It is all about trusting valuable data to the cloud
- This data can be strictly regulated (HIPAA, SOX) for auditability

Data Confidentiality Today

No cloud providers offer data confidentiality as a service Amazon Simple Storage Service (S3) - "Data stored within Amazon S3 is not encrypted at rest by AWS. However, users can encrypt their data before it is uploaded to Amazon S3 " [http://aws.amazon.com/articles/1697?_enco ding=UTF8&jiveRedirect=1]

What are the Threats

User-to-user threat
User-to-infrastructure threat
Provider-to-user threat

Protection Mechanisms

The main security mechanism in today cloud is virtualisation
This is effective for user-to-user and user-to-infrastructure threats.

Virtualisation Shortcomings

 However, not all virtualisation software is bug free and
 It is possible to user Cartography to map

on which physical server an instance is running

[<u>Ristenpart</u>, et al. Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds. CCS09]

Protection from Providers

- Virtualisation is no effective means for provider-to-user threat
- Access control mechanisms are not effective when the infrastructure is not fully trusted
 Moreover there is always the problem of hard drivers "left around"

Some Successful Stories

 TC3 use case for the a HIPAA-compliant application to AWS

 Reduction/elimination of protected health information (PHI) from the data stored and processed in the cloud

 AWS GovCloud (US): a specialised regional cloud where only restricted personnel as access to its facilities

What about Encryption?

 Traditional Encryption can help to protect the data confidentiality. But it is not practical because:
 – No computation is possible on the ciphertext

Ciphertext cannot be searched

We loose the initial benefits of Cloud Computing

Homomorphic Encryption

Enables computation on encrypted data

- In 2009 Craig Gentry showed that fully homomorphic encryption was possible (but not practical)
- Recent work at Microsoft (Lauter et al) provides some practical breakthrough
 - Adds 100 numbers (128 bit) in 20 millisecs
 - Lots of statistical analysis can be done (i.e. predict when a person is going to have a heart attack)

Encrypted Search

Performing of search and matching operations on fully encrypted data
 Several schemes exist

 Single-user
 Semi-fledged multi-user
 Full-fledged multi-user

Single-user Searchable Encryption

Crypto-components are divide between the user and the server
The user performs encryption/decryption
The server is responsible for search without learning information about the query and the data

Single-user Searchable Encryption

However

- It is only based on keyword match
- Only a single user can do insert and retrieve operations
- The key can be shared but this complicates key management

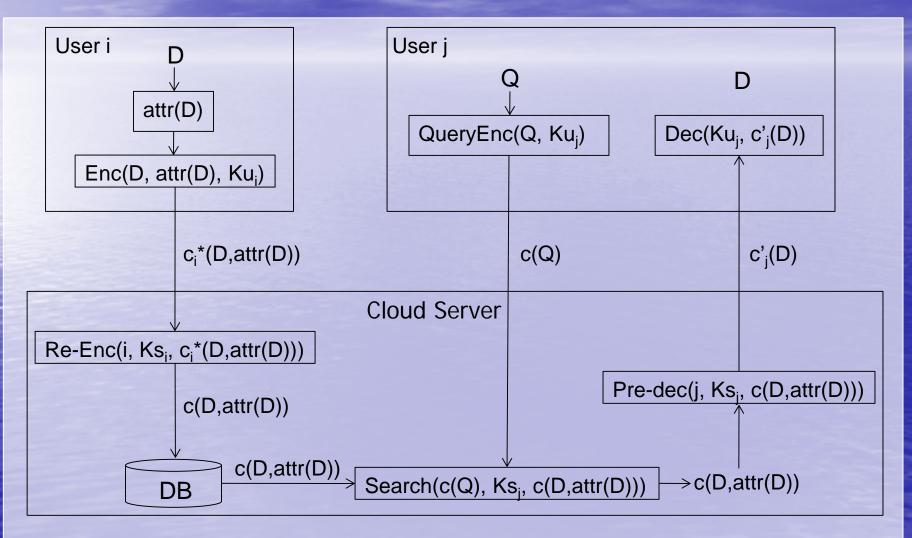
Semi-fledged multi-user

 Multiple users can perform search operations

However, only one single user can do insert operations

Full-fledged multi-user

 Each authorised users can do insert and retrieve operations


Users do not need to share keys

A Concrete Multi-User Scheme

System Model

Database Owner Organisation buying storage from a provider Key Management Authority (KMA) Key generation and revocation User Authorised entity to write and read the db Cloud Server - Stores and retrieves encrypted data for the users

Overview

Init Algorithm

 $Init(1^k)$: on input $1^{k} \rightarrow p, q: q = (p-1)/2$ and |q| = kg generator of G: unique order q subgroup of Z_p^* choose x random from Z_a^* output $h = g^x$, H, f, sPubParams(G, g, q, h, H, f)MSK(x,s)

Key Generation

KeyGen(MSK,i) For each user *i* choose a random x_{i1} from Z_q^* Compute $x_{i2} = x - x_{i1}$ Transmit $Ku_i = (x_{i1}, s)$ to user *i* Transmit $Ks_i = (i, x_{i2})$ to cloud server

Performing an INSERT operation

User u_i

INSERT INTO $table _name(attr _name_1,...,attr _name_n)$ $VALUES(value_1,...,value_n)$

Preparing Record for Encryption

 $D = (a_1, ..., a_n)$ $a_k = (attr _name_k, value_k)$ $attr(a_k) \rightarrow \{v_1, ..., v_m\}$

if $value_k$ is a string then attr(D) outputs $\{v_k = value_k\}$

Preparing Record for Encryption

If *value*_k is a numerical value then it creates a bit representation For instance, (*age*,18) in 6 - bit is 010010 $attr((age, 18)) \rightarrow \{v_{age_1} = 0^{****}, \}$ $v_{age_2} = *1***, v_{age_3} = **0***,$ $v_{age_4} = ***0**, v_{age_5} = ***1*,$ $V_{age_6} = ****0$

User-side Encryption

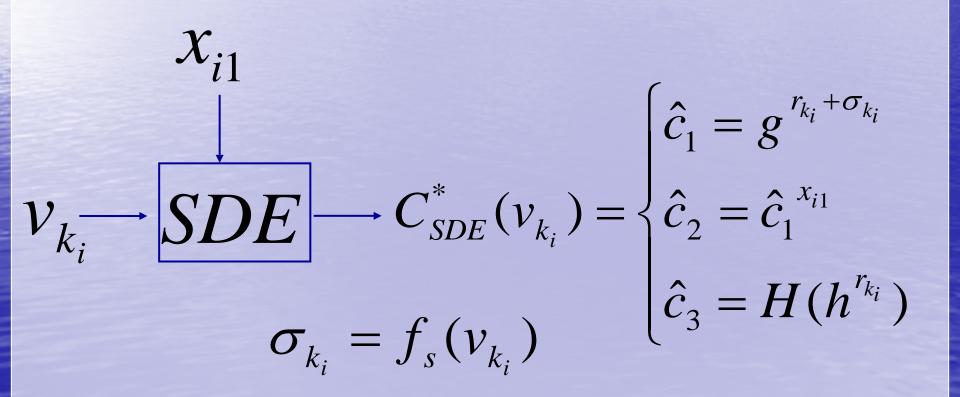

User u_i $Ku_i(x_{i1}, s)$

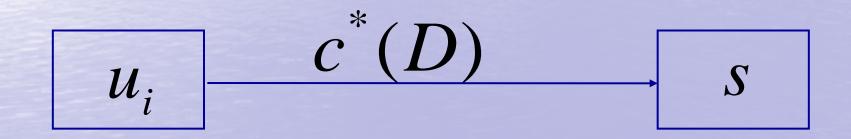
table __name $\longrightarrow f() \longrightarrow f_s(table __name)$ attr __name_k $\longrightarrow f() \longrightarrow f_s(attr __name_k)$

User-side Encryption User u_i $Ku_i(x_{i1}, s)$ X_{i1} $a_k \longrightarrow |PE| \longrightarrow C^*_{PE}(a_k) = (g^{r_k}, g^{r_k x_{i1}}a_k)$

User-side Encryption

 $attr(a_k) = \{v_{k_1}, \dots, v_{k_m}\}$

User-side Encryption

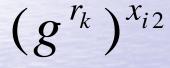

 $c^{*}(D) = (c^{*}(a_{1}), \dots, c^{*}(a_{n}))$

 $c^*(a_k) = (f_s(attr_name_k),$

 $c_{PE}^{*}(a_{k}),$

 $c_{SDE}^{*}(v_{k_{1}}),...,c_{SDE}^{*}(v_{k_{m}}))$

Sending the data to the Cloud



 $KS_i(i, x_{i2})$ X_{i2} $C_{PE}^*(a_k) \longrightarrow PE - REncr \longrightarrow C_{PE}(a_k)$

 $C_{PE}^{*}(a_{k}) = (g^{r_{k}}, g^{r_{k}x_{i1}}a_{k})$

 $C_{PE}^{*}(a_{k}) = (g^{r_{k}}, g^{r_{k}x_{i1}}a_{k})$

 $C_{PE}^{*}(a_{k}) = (g^{r_{k}}, g^{r_{k}x_{i1}}a_{k})$

 $(g^{r_k})^{x_{i2}} \cdot g^{r_k x_{i1}} a_k$

 $C_{PE}^{*}(a_{k}) = (g^{r_{k}}, g^{r_{k}x_{i1}}a_{k})$

 $(g^{r_k})^{x_{i2}} \cdot g^{r_k x_{i1}} a_k = g^{r_k x_{i2} + r_k x_{i1}} a_k = g^{r_k x} a_k$

$$C_{PE}^{*}(a_{k}) = (g^{r_{k}}, g^{r_{k}x_{i1}}a_{k})$$

$$(g^{r_{k}})^{x_{i2}} \cdot g^{r_{k}x_{i1}}a_{k} = g^{r_{k}x_{i2}+r_{k}x_{i1}}a_{k} = g^{r_{k}x}a_{k}$$

$$C_{PE}(a_{k}) = (g^{r_{k}}, g^{r_{k}x}a_{k})$$

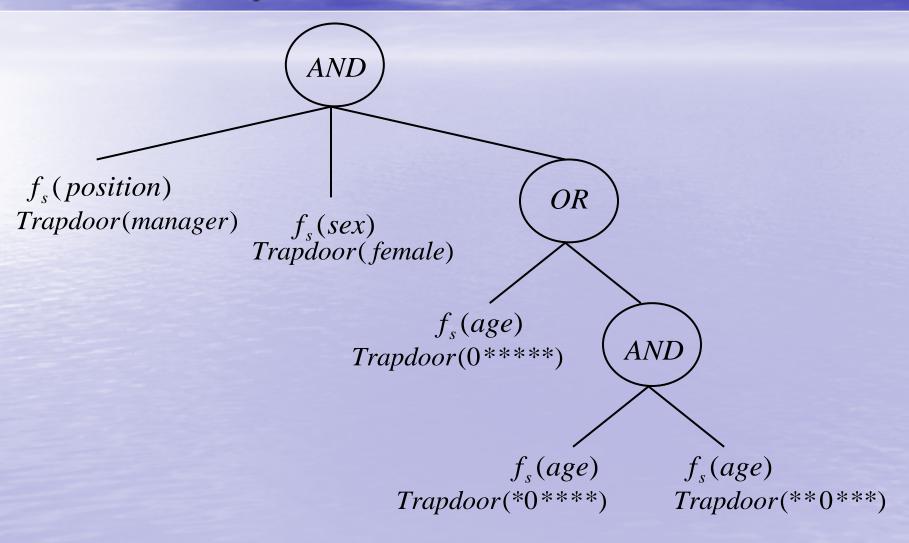
$$\begin{array}{c} x_{i2} \\ \downarrow \\ C_{SDE}^{*}(v_{k_{i}}) \longrightarrow SDE - REncr \longrightarrow C_{SDE}(v_{k_{i}}) \end{array}$$

$$C_{SDE}^{*}(v_{k_{i}}) = \begin{cases} \hat{c}_{1} = g^{r_{k_{i}} + \sigma_{k_{i}}} \\ \hat{c}_{2} = \hat{c}_{1}^{x_{i_{1}}} \\ \hat{c}_{3} = H(h^{r_{k_{i}}}) \end{cases}$$

$$c_{1} = (\hat{c}_{1})^{x_{i2}} \cdot \hat{c}_{2} = (\hat{c}_{1})^{x_{i2} + x_{i1}} = \hat{c}_{1}^{x} =$$
$$= (g^{r_{k_{i}} + \sigma_{k_{i}}})^{x} = h^{r_{k_{i}} + \sigma_{k_{i}}}$$
$$c_{2} = \hat{c}_{3} = H(h^{r_{k_{i}}})$$

$$C_{SDE}(v_{k_i}) = (c_1, c_2)$$

Storing in the Encrypted DB

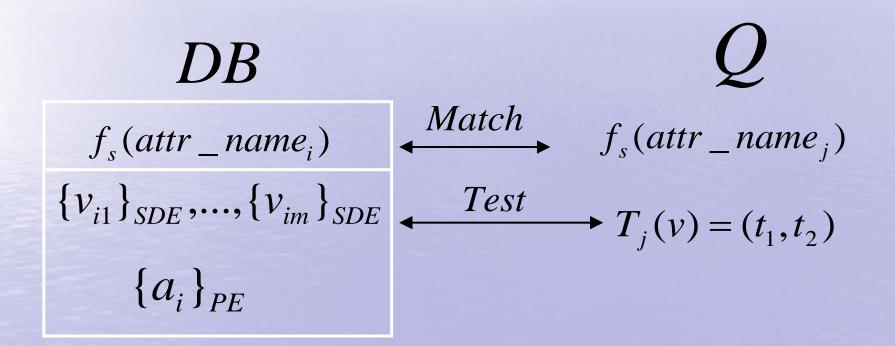

$$\begin{array}{ccc} \text{id} & f_{s}(attr_name_{1}) & \cdots & f_{s}(attr_name_{n}) \\ 1 & \{a_{1}\}_{PE} & & \{a_{n}\}_{PE} \\ & \{v_{11}\}_{SDE}, \dots, \{v_{1m}\}_{SDE} & \cdots & \{v_{n1}\}_{SDE}, \dots, \{v_{nl}\}_{SDE} \end{array}$$

Performing a Query

User *u*_j

Q: SELECT name FROM Personnel WHERE position = manger and sex = female and age < 40

Tree Representation


Generation of Trapdoors

User u_j $Ku_j(x_{j1},s)$ x_{j1} $v \longrightarrow Trapdoor \longrightarrow T_j(v) = (t_1, t_2)$ $t_1 = g^{-r_v} g^{\sigma_v}$ $t_2 = h^{r_v} g^{-x_{j1}r_v} g^{x_{j1}\sigma_v} = g^{x_{j2}r_v} g^{x_{j1}\sigma_v}$

Sending the query to the Cloud

Performing the Search on the Cloud

Performing the Test

 $Ks_{j}(j, x_{j2})$ x_{j2} $T_j(v) \longrightarrow Test \longrightarrow T = g^{x\sigma_v}$ $T = t_1^{x_{j2}} \cdot t_2 = (g^{-r_v} g^{\sigma_v})^{x_{j2}} \cdot g^{x_{j2}r_v} g^{x_{j1}\sigma_v} =$ $= g^{-r_v x_{j2}} g^{\sigma_v x_{j2}} \cdot g^{x_{j2} r_v} g^{x_{j1} \sigma_v} = g^{x \sigma_v}$

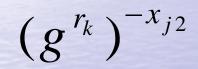
Performing the Test

$C_{SDE}(v_{k_i}) = (c_1, c_2)$

 $c_1 = h^{r_{k_i} + \sigma_{k_i}}$ $c_2 = H(h^{r_{k_i}})$

Performing the Test

 $c_{2} = H(c_{1} \cdot T^{-1})$ $H(h^{r_{k_{i}}}) = H(h^{r_{k_{i}} + \sigma_{k_{i}}} \cdot g^{-x\sigma_{v}})$ $H(h^{r_{k_i}}) \stackrel{\cdot}{=} \underbrace{H}_{\gamma}(h^{r_{k_i}} \cdot g^{x\sigma_{k_i}} \cdot g^{-x\sigma_{\gamma}})$ $\sigma_{k_i} = \sigma_{v}$ $\sigma_{k_i} = f_s(value_{k_i}) \quad \sigma_v = f_s(value)$


$$C_{PE}(a_{k}) = (g^{r_{k}}, g^{r_{k}x} a_{k}) \quad Ks_{j}(j, x_{j2})$$

$$X_{j2}$$

$$\downarrow$$

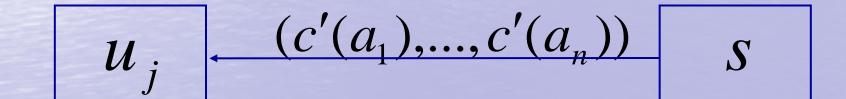
$$C_{PE}(a_{k}) \longrightarrow PE - RDecr \longrightarrow C'(a_{k}) \begin{cases} g^{r_{k}} \\ g^{r_{k}x} a_{k} \cdot (g^{r_{k}})^{-x_{j2}} = g^{r_{k}x} a_{k} \cdot g^{-r_{k}x_{j2}} = \\ g^{r_{k}(x - x_{j2})}a_{k} = g^{r_{k}x_{j1}}a_{k} \end{cases}$$

 $C_{PE}(a_k) = (g^{r_k}, g^{r_k x} a_k)$

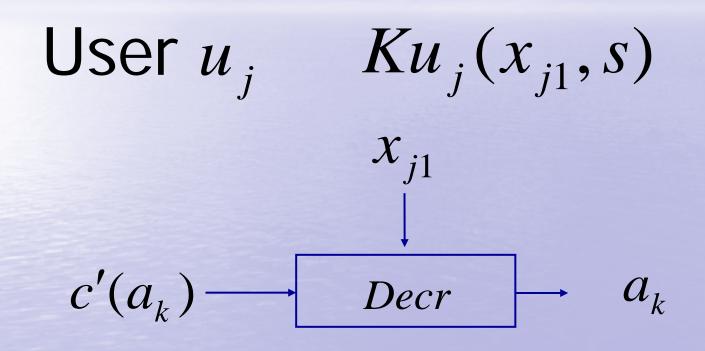
 $C_{PE}(a_k) = (g^{r_k}, g^{r_k x}, a_k)$

 $(g^{r_k})^{-x_{j2}} \cdot g^{r_k x} a_k$

 $C_{PE}(a_k) = (g^{r_k}, g'^{k^{\lambda}} a_k)$


 $(g^{r_k})^{-x_{j2}} \cdot g^{r_k x} a_k = g^{-r_k x_{j2}} \cdot g^{r_k x} a_k =$ $= g^{r_k(x - x_{j2})} a_k = g^{r_k x_{j1}} a_k$

 $C_{PE}(a_k) = (g^{r_k}, g^{r_k x} a_k)$ $(g^{r_k})^{-x_{j2}} \cdot g^{r_k x} a_k = g^{-r_k x_{j2}} \cdot g^{r_k x} a_k =$ = $g^{r_k (x - x_{j2})} a_k = g^{r_k x_{j1}} a_k$ $C'(a_k) = (g^{r_k}, g^{r_k x_{j1}} a_k)$


 $C_{PE}(a_k) = (g^{r_k}, g^{r_k x} a_k)$

 $(g^{r_k})^{-x_{j2}} \cdot g^{r_k x} a_k = g^{-r_k x_{j2}} \cdot g^{r_k x} a_k =$ $= g^{r_k(x - x_{j2})} a_k = g^{r_k x_{j1}} a_k$ $C'(a_k) = (g^{r_k}, g^{r_k x_{j1}} a_k)$

Sending the result to the User

Final Decrypt

 $g^{r_k x_{j1}} a_k \cdot (g^{r_k})^{-x_{j1}} = a_k$

Final Remarks

- Is this The Solution for Cloud Confidentiality?
 - Efficiency: Decently fast although search on numerical values can take seconds
 - Collusions
 - Fine-grained access: Instead of PE we could use other encryption schemes (ABE)
 - Query structure in clear

Take Away

 Confidentiality solutions exist but still more needs to be done

 More effort from the cloud providers towards security solutions