DYNAMIC PHARMING ATTACK & LOCKED SAME-ORIGIN-POLICY (SOP) FOR WEB BROWSERS

Umesh Shankar, Chris Karlof, J.D. Tygar, David Wagner (*Proceedings of* 14th ACM conference – on Computer and Communication Security p.58-71)

Presented by: Huy Van M.

Attack method

Same Origin Policy (SOP)

- Current browsers' implementation of SOP
 - > Applicable for 'active' contents
 - Ensure active contents are from SAME domain name + port + protocol
- Weak locked SOP
 - legacy SOP (domain name + port + protocol) PLUS
 - SSL validity bit: invalid when CN/domain name mismatched or self-signed certificate
- Strong locked SOP
 - legacy SOP (domain name + port + protocol) PLUS
 - SSL public key

Deployability

- Challenge:
 - More secure browser
 - Backward compatible
- How are they perform?
 - > Weak locked SOP:
 - Low false positive rate (~0.05%)
 - Basic protection, easily to be defeated by a tricky pharmer who can obtain a valid SSL cert.
 - Strong locked SOP:
 - Break several websites (~0.6% false positive)
 - High level protection

Comments

- Implementation is easy
 - > Browser developers only need to check the validity of SSL certificates.
 - > Better security at minimum cost.
- Cumbersome to apply for websites hosted on multiple servers:
 - web developers need to post SSL public key in a separate file on servers.
- Hacking prevention is limited:
 Root of the problem: dns manipulation
 Cosmetics approach: easy to be bypassed by hackers
 What else can be done?