
Oblivious Hashing: A stealthy
sof tw ar e ver if ic ation p r im itive

Authors: Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. Jakubowski��� �� �� �� � � �� 	
�� � �� �� � �� � ���� �� �� � �� �� � �� � �"! # � � � �$ �

Presented by Dong Zhang

Summary
• Presented a tamper-resistance

primitive that can be used to verify the
execution behavior of a program.

• Demonstrated a software
implementation

• Discussed unique issues around
oblivious hashing

How d oes it w or k ?

© Springer-Verlag Berlin Heidelberg 2003.

“… allows implicit computation of a hash value based on the actual
execution.”

• Inject hashing instructions

• Capture memory content

• Produce hash value

• not all are obliviously hashable

A p p re c i at i v e C o mme n t s

• Key features of a Software
implementation give support to
their late arguments.

• Wide application use
• Limitations make the risk known …

Ap p r ec iative C om m ents
(lim itations)

• Define Unhashable statements
– Too variable=Unhashable
– Deterministic functions are hashable

statements

• Code coverage for pre-stored hash
– Reminding us to run through security

sensitive execution paths

C ri t i c al C o mme n t s
Unclear experiment setup

© Springer-Verlag Berlin Heidelberg 2003.

“We instrumented the
program to produce a trace of
expression values that we
are interested in. We then ran
the instrumented program
multiple times, in all
interesting execution contexts,
and post-process the tracing
output to determine which
expressions were constant
across runs.”

C ri t i c al C o mme n t s (c o n t ’)

Example from the paper

© Springer-Verlag Berlin Heidelberg 2003.

Q ue s t i o n

What unhashable code segments can
you think of are critical?

Does oblivious hashing affect software
update or patching?

