
Architecture for Protecting Critical Secrets 
in Microprocessors

Lee, R.B.; Kwan, P.C.S.; McGregor, J.P.; Dwoskin, J.; Zhenghong 
Wang;

ISCA '05. Proceedings. 32nd International Symposium on Computer Architecture, 
2005 04-08 June 2005 Page(s):2 - 13

Presented by Ahmed Mujuthaba



“Secret Protected” Architecture

• Critical secret to be protected: 
Cryptographic Keys.

• No factory installed device secrets.
• Decoupling of user secrets from device.
• Minimal addition to the general-purpose 

processor architecture.
• Only use symmetric master keys.



Keeping the secret safe in the face 
of:

• Statically & dynamically injected hostile 
code.

• Modification of software binaries in 
memory or disk

• Physical attacks such as probing of the 
external buses.



Trust model

Physical trust boundary – outlined in bold.



Device Master Key

• Device Master Key installed when TSM is 
installed.

• Special secure (non-volatile) register in the 
processor to store Device Master Key.

• No processor instruction allows reading of 
the Device Master Key register.

• Device Master Key can be reset – but 
have to reinstall TSM as well.



User Master Key

• User Master Key is associated with the 
user and not with the device.

• User Master Key generated from secret(s) 
possessed by user.

• Special secure register in the processor to 
store User Master Key for the duration of 
session.

• Only the TSM can access the User Master 
Key.



Key Chain
• Keys are hierarchically 

encrypted to form a key 
chain.

• Only a leaf key can be 
used to encrypt user data.

• All keys except the User 
Master Key can be in a 
publicly accessible 
(untrusted) repositories.

Key Record

Key Chain



What’s good about the paper

• Other existing architectures rely on a 
permanent factory installed secret.

• Trust is derived from uniqueness and 
provability of this secret.

• In SP-Architecture trust is derived from 
user secret.

• Hence trust is portable.



Possible performance issue?
• During installation of the TSM it is hashed 

using the Device Master Key installation. 
Hashes are generated per instruction cache 
line and stored inline with the code. 
When instruction is fetched in to the on-chip 
cache integrity of the code is verified by the 
processor using the hashes. After the integrity 
check the hashes are replaced by NO-OPs.

• The authors do not address the performance 
issues that may arise due to that many NO-
OPs in the instruction stream.



Problem with Secure I/O method
• The authors propose the following as part of the secure I/O 

method:
“After the user presses the Authenticate button, the platform 
switches the keyboard to a secure mode and begins diverting all 
keystrokes to the processor directly. Security against software 
attacks for this input path is provided by encryption from the 
keyboard to the processor. The processor’s Secure I/O Logic 
unit decrypts the keystrokes”

• The main problem with the above is the need for a key in the 
keyboard, since the keyboard cannot encrypt without one.

• Which key does the keyboard need?
• If the keyboard has the Device Master Key, the question of how 

it is installed and issue of it being compromised arise. 
• If the keyboard and the Secure I/O unit share their own 

symmetric key, how is it installed and how secure is it?
• Solutions?



A Solution to the Secure I/O 
problem

• One method to solve this problem is to 
install a public key derived from the Device 
Master Key in the keyboard during 
installation.

• Device Master Key will be safe even if the 
keyboard is compromised.

• However this goes against one of the aims 
of the authors, namely not to use 
expensive public/private key pairs.



Question

• If such systems become cheaply available 
will you consider encrypting/signing your 
emails and files on a regular basis?

• If not, why not?


