Watermarking, Tamper-Proofing
and Obfuscation — Tools for
Software Protection

Christian Collberg & Clark Thomborson
Computer Science Tech Report 170
University of Auckland

4 February 2000

wmobf.1 1/5/00 Clark Thomborson

Watermarking and Fingerprinting
Watermark: a secret message embedded into a cover message.

» Image, audio, video, text...
* Visible or invisible marks
» Fragile or robust

« Watermarking

1. Discourages theft

2. Allows us to prove theft
* Fingerprinting

3. Allows us to trace violators

wmobf.2 1/5/00 Clark Thomborson

Watermarking Variants

» The watermark may be visible and robust (difficult to remove),
providing a proof of ownership.

» The watermark may be fragile (obliterated by any modification),
proving authenticity.

% The watermark may be invisible and robust, providing proof of
ownership and security from theft.

* Fingerprinting is a variant of watermarking in which we put a
unique customer-ID in each object we distribute. Piracy can be
detected if we discover duplicate fingerprints, and these fingerprints
identify the (witting or unwitting) source of the distribution.

wmobf.3 1/5/00 Clark Thomborson

Our Desiderata for WMs

« Watermarks should be stealthy -- difficult for an
adversary to locate.

« Watermarks should be resilient to attack --
resisting attempts at removal even if they are
located.

« Watermarks should have a high data-rate -- so
that we can store a meaningful message without
significantly increasing the size of the object.

wmobf.4 1/5/00 Clark Thomborson

Attacks on Watermarks

e Subtractive attacks: remove the WM without
damaging the cover.

* Additive attacks: add a new WM without revealing
“which WM was added first”.

 Distortive attacks: modify the WM without damaging
the cover.

* Collusive attacks: examine two fingerprinted objects,
or a watermarked object and its unwatermarked cover;
find the differences; construct a new object without a
recognisable mark.

wmobf.5 1/5/00 Clark Thomborson

Detfenses for Software Watermarks

* Obfuscation: we can modify the software so that a
reverse engineer will have great difficulty figuring out
how to reproduce the cover without also reproducing
the WM.

« Tamperproofing: we can add integrity-checking code
that (almost always) renders it unusable if the object is
modified.

wmobf.6 1/5/00 Clark Thomborson

Classification of SW Watermarks

e Static code watermarks are stored in the section
of the executable that contains instructions.

o Static data watermarks are stored in other
sections of the executable.

“ Dynamic data watermarks are stored in a
program’s execution state. Such watermarks
are resilient to distortive (obfuscation) attacks.

wmobf.7 1/5/00 Clark Thomborson

Dynamic Watermarks

« Easter Eggs are revealed to any end-user who types a
special input sequence.

* Execution Trace Watermarks are carried
(steganographically) in the instruction execution
sequence of a program, when it 1s given a special input.

< Data Structure Watermarks are built
(steganographically) by a program, when it is given a
special input sequence (possibly null).

wmobf.8 1/5/00 Clark Thomborson

Easter Eggs

FE Netscape: The Book of Mozilla, 12:10 h
N rem—— B| - The watermark is visible
| -- if you know where to
And the beast shall come forth '
surrounded by a rolling cloud of 10 Ok .
vengeance. The nouse of the .
unbefievers shafi be razed and they o NOt reSIIICIlt, once the
shalf be scorched to the earth. Their .
tags shatl BIink untif the end of days. secret 1s out.

e See www.eeggs.com

from The Book

of Mozilla,
12:10
| 2l l 1]
wmobf.9 1/5/00 Clark Thomborson

Our Goals for Dynamic DS WMs

Stealth. Our WM should “look like” other structures
created by the cover (search trees, hash tables, etc.)

Resiliency. Our WM should have some properties that
can be checked, stealthily and quickly at runtime, by
tamperproofing code (triangulated graphs,
biconnectivity, ...)

Data Rate. We would like to encode 100-bit WMs, or
1000-bit fingerprints, in a few KB of data structure.
Our fingerprints may be 1000-bit integers that are
products of two primes.

wmobf.10 1/5/00 Clark Thomborson

Permutation Graphs (Harary)

The WM is 1-3-5-6-2-4. 1
High data rate: 1g(n!) = 1g(n/e) —

bits per node.
High stealth, low resiliency (?) 4 X % \

« Tamperproofing may involve \ >
storing the same permutation in /
another data structure. / /

What if an adversary changes
the node labels? \6

% Node labels may be obtained from \)
node positions on another list.

wmobf.11 1/5/00 Clark Thomborson

3

J//#

[\

—1

Oriented Trees

» Represent as “parent- lig 2 22,
pointer trees”

e There are

ca”_l/n3/2+0(05”/n5/2)

oriented trees on # nodes,

with %

¢ =0.44 and o = 2.956,

so the data rate 1s A few of the 48 trees for n =7

lg(ar)/2 = 0.8 bits/node. Could you “hide” this data structure in the code

for a compiler? For a word processor?
wmobf.12 1/5/00 Clark Thomborson

Planted Plane Cubic Trees

n=
* One root node (in-degree 1).

» Trivalent internal nodes, with
rotation on edges.

* We add edges to make all nodes
trivalent, preserving planarity

n=1 n=>2 3
! 2\5 é\
n=4
and distinguishing the root.
* Simple enumeration (Catalan
numbers).
» Data rate is ~2 bits per leaf node.
» Excellent tamperproofing.

wmobf.13 1/5/00 Clark Thomborson

Open Problems in Watermarking

* We can easily build a “recogniser” program to
find the WM and therefore demonstrate
ownership... but can we release this recogniser
to the public without compromising our
watermarks?

* Can we design a “partial recogniser” that
preserves resiliency, even though it reveals the
location of some part of our WM?

wmobf.14 1/5/00 Clark Thomborson

State of the Art in SW
Watermarking

* First dynamic DS watermarks installed in 1999.
« Recognition SW being developed.

* Ongoing search for graph structures that are
suitable for carrying fingerprints. Requirements:
— casily enumerable
— low outdegree (but high data rate)
— quickly-checked properties (for tamperproofing)

wmobf.15 1/5/00 Clark Thomborson

Software Obfuscation

« Many authors, websites and even a few commercial
products offer “automatic obfuscation” as a defense
against reverse engineering.

» Existing products generally operate at the lexical level
of software, for example by removing or scrambling
the names of identifiers.

* We seem to have been the first (in 1997) to use
“opaque predicates” to obfuscate the control structure
of software.

wmobf.16 1/5/00 Clark Thomborson

{A;B}

Opaque Predicates

A

“always true”

wmobf.17 1/5/00

A

B Bbue

“indeterminate”
(“always false” 1s not shown)

4,047

“tamperproof”

Clark Thomborson

if (f==g) then ?

f.Insert ()

g.Move ()

C

g.Delete()

-

Static alias analysis is intractable, so a de-obfuscator must
use dynamic analysis to remove our opaque predicates.

wmobf.18 1/5/00

Clark Thomborson

Conclusion

* New art in software obfuscation can make it more
difficult for pirates to defeat standard
tamperproofing mechanisms, or to engage in other
forms of reverse engineering.

* New art in software watermarking can embed
“ownership marks” in software, that will be very
difficult for anyone to remove.

e Much more R&D i1s required before robust
obfuscating and watermarking tools are easy to use
and readily available to software developers.

wmobf.19 1/5/00 Clark Thomborson

