
wmobf.1 1/5/00 Clark Thomborson

Watermarking, Tamper-Proofing
and Obfuscation – Tools for

Software Protection
Christian Collberg & Clark Thomborson

Computer Science Tech Report 170
University of Auckland

4 February 2000

wmobf.2 1/5/00 Clark Thomborson

Watermarking and Fingerprinting

• Image, audio, video, text…
• Visible or invisible marks
• Fragile or robust
• Watermarking

1. Discourages theft
2. Allows us to prove theft

• Fingerprinting
3. Allows us to trace violators

Watermark: a secret message embedded into a cover message.

wmobf.3 1/5/00 Clark Thomborson

Watermarking Variants
• The watermark may be visible and robust (difficult to remove),

providing a proof of ownership.
• The watermark may be fragile (obliterated by any modification),

proving authenticity.
� The watermark may be invisible and robust, providing proof of

ownership and security from theft.
• Fingerprinting is a variant of watermarking in which we put a

unique customer-ID in each object we distribute. Piracy can be
detected if we discover duplicate fingerprints, and these fingerprints
identify the (witting or unwitting) source of the distribution.

wmobf.4 1/5/00 Clark Thomborson

Our Desiderata for WMs

• Watermarks should be stealthy -- difficult for an
adversary to locate.

• Watermarks should be resilient to attack --
resisting attempts at removal even if they are
located.

• Watermarks should have a high data-rate -- so
that we can store a meaningful message without
significantly increasing the size of the object.

wmobf.5 1/5/00 Clark Thomborson

Attacks on Watermarks
• Subtractive attacks: remove the WM without

damaging the cover.
• Additive attacks: add a new WM without revealing

“which WM was added first”.
• Distortive attacks: modify the WM without damaging

the cover.
• Collusive attacks: examine two fingerprinted objects,

or a watermarked object and its unwatermarked cover;
find the differences; construct a new object without a
recognisable mark.

wmobf.6 1/5/00 Clark Thomborson

Defenses for Software Watermarks

• Obfuscation: we can modify the software so that a
reverse engineer will have great difficulty figuring out
how to reproduce the cover without also reproducing
the WM.

• Tamperproofing: we can add integrity-checking code
that (almost always) renders it unusable if the object is
modified.

wmobf.7 1/5/00 Clark Thomborson

Classification of SW Watermarks

• Static code watermarks are stored in the section
of the executable that contains instructions.

• Static data watermarks are stored in other
sections of the executable.

�Dynamic data watermarks are stored in a
program’s execution state. Such watermarks
are resilient to distortive (obfuscation) attacks.

wmobf.8 1/5/00 Clark Thomborson

Dynamic Watermarks

• Easter Eggs are revealed to any end-user who types a
special input sequence.

• Execution Trace Watermarks are carried
(steganographically) in the instruction execution
sequence of a program, when it is given a special input.

�Data Structure Watermarks are built
(steganographically) by a program, when it is given a
special input sequence (possibly null).

wmobf.9 1/5/00 Clark Thomborson

Easter Eggs

• The watermark is visible
-- if you know where to
look!

• Not resilient, once the
secret is out.

• See www.eeggs.com

wmobf.10 1/5/00 Clark Thomborson

Our Goals for Dynamic DS WMs
• Stealth. Our WM should “look like” other structures

created by the cover (search trees, hash tables, etc.)
• Resiliency. Our WM should have some properties that

can be checked, stealthily and quickly at runtime, by
tamperproofing code (triangulated graphs,
biconnectivity, …)

• Data Rate. We would like to encode 100-bit WMs, or
1000-bit fingerprints, in a few KB of data structure.
Our fingerprints may be 1000-bit integers that are
products of two primes.

wmobf.11 1/5/00 Clark Thomborson

Permutation Graphs (Harary)
• The WM is 1-3-5-6-2-4.
• High data rate: lg(n!) ≈ lg(n/e)

bits per node.
• High stealth, low resiliency (?)
• Tamperproofing may involve

storing the same permutation in
another data structure.

• What if an adversary changes
the node labels?

1 3

5

6
2

4

� Node labels may be obtained from
 node positions on another list.

wmobf.12 1/5/00 Clark Thomborson

Oriented Trees

• Represent as “parent-
pointer trees”

• There are
)/O(/ 2/52/31 nnc nn αα +−

oriented trees on n nodes,
with
c = 0.44 and α = 2.956,
so the data rate is
lg(α)/2 ≈ 0.8 bits/node.

1: 2: 22:

48:

A few of the 48 trees for n = 7
Could you “hide” this data structure in the code
for a compiler? For a word processor?

wmobf.13 1/5/00 Clark Thomborson

Planted Plane Cubic Trees

• One root node (in-degree 1).
• Trivalent internal nodes, with

rotation on edges.
• We add edges to make all nodes

trivalent, preserving planarity
and distinguishing the root.

• Simple enumeration (Catalan
numbers).

• Data rate is ~2 bits per leaf node.
• Excellent tamperproofing.

n = 1 n = 2 n = 3

n = 4

wmobf.14 1/5/00 Clark Thomborson

Open Problems in Watermarking

• We can easily build a “recogniser” program to
find the WM and therefore demonstrate
ownership… but can we release this recogniser
to the public without compromising our
watermarks?

• Can we design a “partial recogniser” that
preserves resiliency, even though it reveals the
location of some part of our WM?

wmobf.15 1/5/00 Clark Thomborson

State of the Art in SW
Watermarking

• First dynamic DS watermarks installed in 1999.
• Recognition SW being developed.
• Ongoing search for graph structures that are

suitable for carrying fingerprints. Requirements:
– easily enumerable
– low outdegree (but high data rate)
– quickly-checked properties (for tamperproofing)

wmobf.16 1/5/00 Clark Thomborson

Software Obfuscation

• Many authors, websites and even a few commercial
products offer “automatic obfuscation” as a defense
against reverse engineering.

• Existing products generally operate at the lexical level
of software, for example by removing or scrambling
the names of identifiers.

• We seem to have been the first (in 1997) to use
“opaque predicates” to obfuscate the control structure
of software.

wmobf.17 1/5/00 Clark Thomborson

Opaque Predicates
{A; B } A

B

pTT F

“always true”

A

B

P?T F

“indeterminate”

B’

A

B

PTT F

“tamperproof”

Bbug

(“always false” is not shown)

wmobf.18 1/5/00 Clark Thomborson

if (f == g) then ?

g.Merge(f) g.Delete()

f.Split(g)

g.Move()f.Insert()

F

(d)(f) (e)

F

(c)(b)(a)

G

g

f
g

f
g

GG

f

f
g

G

f
g

G

f
g

G

Static alias analysis is intractable, so a de-obfuscator must
use dynamic analysis to remove our opaque predicates.

wmobf.19 1/5/00 Clark Thomborson

Conclusion
• New art in software obfuscation can make it more

difficult for pirates to defeat standard
tamperproofing mechanisms, or to engage in other
forms of reverse engineering.

• New art in software watermarking can embed
“ownership marks” in software, that will be very
difficult for anyone to remove.

• Much more R&D is required before robust
obfuscating and watermarking tools are easy to use
and readily available to software developers.

