Exploring Steganography: Seeing the Unseen

Neil F. Johnson Sushil Jajodia

George Mason University

Introduction to Steganography

What

 Steganography literally means "covered writing", takes one piece of information and hides it within another.

Why

- You are working at a company that does not allow encrypted email, and you want to send a "secret message".
- You are resident of a country that does not allow encrypted communication, and you want to send a secret.

How

 Steganography takes advantage of unused or insignificant areas of data in computer files (images, sounds recordings, etc.), replacing it with information to be hidden.

Brief Review of Image File Formats

Colour (Gray-scale) representation of images

- 256 colours (8 bits per pixel = 1B / pixel)
- 16M colours (24 bits / pixel = Red + Green + Blue)
 - e.g. 1024 columns x 768 rows x 3B / pixel = 2.3 MB

Compression

- Lossless (GIF, 8-bit BMP format)
- Lossy (JPEG format)
 - Reduces an image file to about 5% of its normal size

Embedding Data

- Cover image file holds the hidden message
- Message file the message to be hidden. Formats:
 - plaintext
 - ➤ ciphertext
 - image
- Stego_key password, to be used to encrypt and decrypt the message

Steganographic Methods

Information can be hidden in many different ways in an image. According to this article, steganographic methods can be categorised into:

- least significant bit insertion (my focus)
- masking and filtering
- algorithms and transformations

Least Significant Bit Insertion

Information can be hidden in the least significant bits of an image.

E.g. In a 24-bit image with 1024x768 pixels, we can store 3 bits in each pixel (1 bit / Byte), so 1024x768x3 bits = 29.5 KB can be hidden in this 2.3 MB file.

6

5

Least Significant Bit Insertion

 Let's hide 'A' = 10000011 in 24-bit image data. (Example from the paper.)

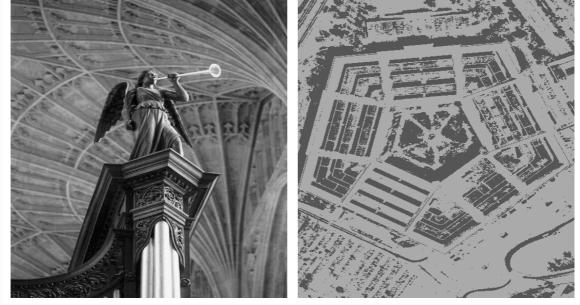
Suppose 3 24-bit pixel values (9B) are

00100111	11101001	11001000
00100111	11001000	11101001
11001000	00100111	11101001

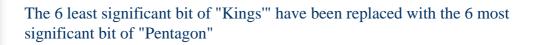
After the insertion, the raster data becomes:

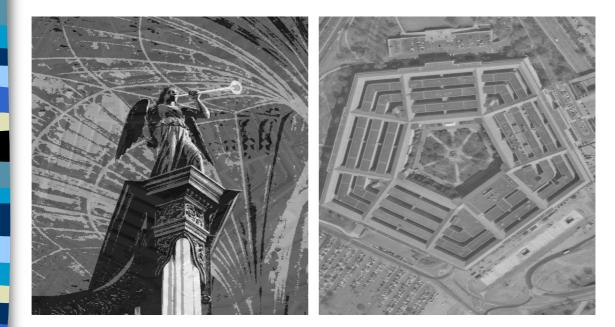
00100111	1110100 <mark>0</mark>	1100100 <mark>0</mark>
0010011 <mark>0</mark>	1100100 <mark>0</mark>	1110100 <mark>0</mark>
1100100 <mark>0</mark>	0010011 <mark>1</mark>	1110100 <mark>1</mark>

Is there an error in the article's example? A = 100000011?


The 1st least significant bit of "Kings" has been replaced with the first most significant bit of "Pentagon." The extracted image is on the right.

7




The 2 least significant bit of "Kings" have been replaced with the 2 most significant bit of "Pentagon"

Copyright 1998-2000 by Fabien A. P. Petitcolas, Computer Laboratory, University of Cambridge

9

Weaknesses of LSB Insertion

- Cover image must be selected carefully because of colour limitation
- LSBI is vulnerable to image manipulation, such as:
 - lossy data compression
 - cropping, scaling
 - image enhancement

Advanced Techniques

Masking and Filtering

 Create the watermarked image, then use it to hide information (embed information in significant area)

Other algorithms and transforms

- combine the compression algorithm with steganography
- may manipulate image properties such as luminance
- scatter message by using some algorithms and also use stego-key to provide extra layer of protection.

11

Conclusion and Comments

- Steganography is not intended to replace cryptography but to supplement it
- LSB Insertion is a quick and easy way to hide information, but
 - it is not robust. It is vulnerable to image manipulation including lossy data compression, colour correction, addition of caption, and geometric modification such as cropping, scaling.
 - It is not secure. It can not survive deliberate attack.
 - Masking and Filtering is more robust than LSB insertion: the stego-message may survive image compression, clipping.

Conclusion and Comments (cont'd)

- Some "*algorithms and transforms*" for steganography allow the stego-information to be spread throughout the message so it looks "more like noise". Others allow the image to be converted to other formats, without any message losses.
- Question: How to hide a message in a cover file?