
The The The The MaginotMaginotMaginotMaginot License: License: License: License:

Failed Approaches toFailed Approaches toFailed Approaches toFailed Approaches to
Licensing Java Licensing Java Licensing Java Licensing Java SoftwareSoftwareSoftwareSoftware

Over the InternetOver the InternetOver the InternetOver the Internet

Author: Mark D. LaDue
Reviewer: Guanglun Yu (George)

9/08/00 2

Presentation Outline
• Introduction
• Tampering Techniques
• Example 1: Hard Coding of License Data
• Example 2: Useless Encription
• Conclusion
• Questions

9/08/00 3

Introduction
Distributing software over the internet on a try-

before-you-buy basis is quite popular today and
such a way for Java software is named the
“Maginot License”.

A user will hold the whole software but without
full functionality unless he makes the payment
and gets the license to unlock the limitation at
his side by himself.

Distributing Java software in that
way is unsuccessful.

9/08/00 4

Introduction
Java programming language provides

“unprecedented opportunities for who wish to
purloin intellectual property”.

The Java’s OO brings programs into individual
logic units(classes) which are easy to handle.

Its Class File Format defines a class file which
contains all the original source code symbols,
fields, methods,.. information which makes
decompiling a Java class much easier.

9/08/00 5

Introduction

In this article, the author picked up some Java
softwares which are type of “Maginot license”
and then broke up these Maginot licenses.

I will explain the techniques Dr. LaDue used and
present two examples to illustrate how he did
them:

Hard Coding of Important Data (WingDis)
Useless Protection(JTimer).

9/08/00 6

 ClassFile {
 u4 magic;
 …
 u2 constant_pool_count;
 cp_info constant_pool[c..count-1];
 u2 fields_count;
 field_info

fields[fields_count];
 u2 methods_count;
 method_info
methods[methods_count];
 ...

}

Java Class File Code_attribute {
 u2 attribute_name_index;
 u4 attribute_length;
 u2 max_stack;
 u2 max_locals;
 u4 code_length;
 u1 code[code_length];
 u2 exception_table_length;
 { u2 start_pc;
 u2 end_pc;
 u2 handler_pc;
 u2 catch_type;
 } exception_table
 [exception_table_length];
 u2 attributes_count;
 attribute_info
 attributes[attributes_count];
 }

<any constant pool > {
 u1 tag;
 u2 <name>index;
 …. <varied>
}

method_info {
 u2 access_flags;
 u2 name_index;
 u2 descriptor_index;
 u2 attributes_count;
 attribute_info
 attributes[attributes_count];
}

attribute_info {
 u2 attribute_name_index;
 u4 attribute_length;
 u1 info[attribute_length];
}

…

Any one of the following

CONSTANT_Class_info
CONSTANT_Fieldref_info
CONSTANT_Methodref_info
CONSTANT_InterfaceMethodref_info
CONSTANT_String_info
CONSTANT_Integer_info
CONSTANT_Float_info
CONSTANT_Long_info
CONSTANT_Double_info
CONSTANT_NameAndType_info
CONSTANT_Utf8_info

9/08/00 7

Tampering Techniques
Tools

Decompilers: Sun’s javap, Mocha
Assistant tools: Inspector(for getting method offset)

 BotI, ItoB(hex editors).
Step 1: From various outside information which the

software presents, locate possible classes which we
need to examine.

Step 2: Use decompiler to examine the located classes and
find the positions (index/line number from the output of
the decompiler) of the bytecodes which relate to the
outside information that we have already gained from
the behavior of the software.

9/08/00 8

Tampering Techniques
Step 3: The javap, mocha give you the inner offset in one

method of the bytecode which we have already located
at previous step.

Step 4: To get, in that class file, exact position index of that
bytecode which we want to change, use the output of
Inspector which gives us the method’s starting offset.

Step 5: Then add the above two offsets to get the absolute
offset in that class file for that bytecode and change
it(normally to goto instruction).

Step 6: Update the original program with tampered classes.
The above are general for the tampering, but they may

contain some difference in each individual case.

9/08/00 9

Hard Coding of License Data
Some companies do hard-code the licensing data and

restrictions in software which in Java, would be the class
files

Finjan Software’s SurfinShield gives a user the evaluation of
30 days license.

But they hard-coded the user’s installation date as the license
starting date into their program when the user installs
SurfinShield.

LaDue found the fatal class is SFped which is much simpler
enough to find the clue of the weakness of the licensing by
using javap.

9/08/00 10

Hard Coding of License Data
Output of Decompiled SFped.class by javap:

public class SFped extends
java.lang.Object {
 static final int year;
 static final int month;
 static final int day;
 public java.util.Date ped;
 public SFped();
}
Method SFped()
 0 aload_0

 1 invokespecial #9 <Method
java.lang.Object()>
 4 aload_0
 5 new #6 <Class java.util.Date>
 8 dup
 9 ldc #3 <Integer 97>
 11 ldc #2 <Integer 3>
 13 ldc #1 <Integer 15>
 15 invokespecial #8 <Method
java.util.Date(int,int,int)>
 18 putfield #7 <Field java.util.Date
ped>
 21 return

9/08/00 11

Hard Coding of License Data
The new SFped class source code rewritten by

the author
public class SFped {
 public Date ped;
 public SFped() {
 ped = new Date();
 ped.setDate(ped.getDate() - 1);
 }
} // use this SFped, …

Compile it and update the SurfinShield with this
new SFped class, then every time when you
start SurfinShield, it always says 29 days left.

9/08/00 12

Useless Encription
Some software companies claimed that their

product solved the Java software’s licensing
problem by providing encription or obfuscation.

InetSoft’s JTimer is a good example of encription
type. As it provides a complicated process:
Admin ---> pub/private key pair, vendor ID;
(vendor)privatekey,vendor ID,expiryDate-> (feed)Admin
--> (generate) Timer class object with a time ticket;
(Application) includes-->that Timer class -->(when run)
checkTicket() -->return true or false to application

9/08/00 13

Useless Encription
Application

JTimers

 TimerAdmin

Call checkTicket()

Always return trueThe Timer has the time
ticket generated by Admin.
Then Timer is embedded
into system to checkTicket

9/08/00 14

Conclusion
The first example shows there is a serious problem for

distributing Java software over the internet on a try-
before-you-buy basis; the second shows there are no
simple solutions; perhaps no solution at all.

Code obfuscation “does nothing to thwart the disassembly
of Java class files.” The class file format allows free and
easy disassembly of classes by anyone who cares to
inspect and tamper with them.

“Including encryption to protect Java application is equally
futile.”

9/08/00 15

Questions
How did Dr. LaDue realize that the license

starting date was hard coded into SFped
class?

Instead of the two passive solutions the
author mentioned in this article, the toy
version and the traditional shareware
concept, is there any other better one?

